人教A版(新)选择性必修二第五章一元函数的导数及其应用5.3导数在研究函数中的应用_第1页
人教A版(新)选择性必修二第五章一元函数的导数及其应用5.3导数在研究函数中的应用_第2页
人教A版(新)选择性必修二第五章一元函数的导数及其应用5.3导数在研究函数中的应用_第3页
人教A版(新)选择性必修二第五章一元函数的导数及其应用5.3导数在研究函数中的应用_第4页
人教A版(新)选择性必修二第五章一元函数的导数及其应用5.3导数在研究函数中的应用_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.4生活中的优化问题举例学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.问题导学达标检测题型探究内容索引问题导学(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为

.(2)利用导数解决优化问题的实质是

.(3)解决优化问题的基本思路:知识点生活中的优化问题上述解决优化问题的过程是一个典型的

过程.优化问题求函数最值数学建模1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.(

)2.解决应用问题的关键是建立数学模型.(

)[思考辨析判断正误]√√题型探究类型一几何中的最值问题例1请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,解答B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.令V′(x)=0,得x=0(舍去)或x=20.∵当0<x<20时,V′(x)>0;当20<x<30时,V′(x)<0.∴V(x)在x=20时取极大值也是唯一的极值,故为最大值.解答引申探究本例条件不变,若要求包装盒的侧面积S(cm2)最大,试问x应取何值?∵EF=60-2x,=8x(30-x)=-8x2+240x=-8(x-15)2+8×152.∴当x=15时,S侧最大为1800cm2.反思与感悟面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.跟踪训练1

(1)已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为______.解析答案解析设圆柱的底面半径为r,则S圆柱底=2πr2,S圆柱侧=2πrh,∴圆柱的表面积S=2πr2+2πrh.令V′(r)=0,得S=6πr2,∴h=2r,∵V′(r)只有一个极值点,∴当h=2r时圆柱的容积最大.解析答案(2)将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为_______cm.解析设弯成圆的一段铁丝长为x(0<x<100),则另一段长为100-x.设正方形与圆形的面积之和为S,类型二实际生活中的最值问题解答(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.解答所以商场每日销售该商品所获得的利润为从而f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6),令f′(x)=0,得x=4或x=6.当x变化时,f′(x),f(x)的变化情况如下表:x(3,4)4(4,6)f′(x)+0-f(x)↗极大值↘由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以当x=4时,函数f(x)取得最大值,且最大值等于42.答

当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有(1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.解答解

当0<x≤10时,解答(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.解

当0<x≤10时,当x∈(0,9)时,W′>0,当x∈(9,10)时,W′<0,所以当x=9时,W取得最大值,综上可得,当x=9时,W取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.解答命题角度2用料、费用最少问题例3某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+

)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;解

设需新建n个桥墩,解答(2)当m=640米时,需新建多少个桥墩才能使y最小?令f′(x)=0,得

=512,所以x=64.当0<x<64时,f′(x)<0,f(x)在区间(0,64)上为减函数;当64<x<640时,f′(x)>0,f(x)在区间(64,640)上为增函数,所以f(x)在x=64处取得最小值.反思与感悟

(1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f′(x)=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.解答跟踪训练3为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=

(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;解

设隔热层厚度为xcm,而建造费用为C1(x)=6x.因此得隔热层建造费用与20年的能源消耗费用之和为解答(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.当0<x<5时,f′(x)<0;当5<x<10时,f′(x)>0,答

当隔热层修建5cm厚时,总费用达到最小值为70万元.达标检测12345解析答案解析

原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.C.-1 D.-8√12345解析答案2.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,则高应为√12345解析

设圆锥的高为hcm,0<h<20,3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P元,销售量为Q件,且销量Q与零售价P有如下关系:Q=8300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)A.30元 B.60元C.28000元 D.23000元√12345解析答案12345解析

毛利润为(P-20)Q,即f(P)=(P-20)(8300-170P-P2),f′(P)=-3P2-300P+11700=-3(P+130)(P-30).令f′(P)=0,得P=30或P=-130(舍去).又P∈[20,+∞),故f(P)max=f(P)极大值,故当P=30时,毛利润最大,所以f(P)max=f(30)=23000(元).4.要制作一个容积为4m3,高为1m的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_____元.160∴当x=2时,ymin=160(元).答案解析123455.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x(单位:元,0≤x≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x的函数;解

设商品降价x元,则多卖出的商品件数为kx2.若记商品一个星期的获利为f(x),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9072,x∈[0,21].解答12345解答12345(2)如何定价才能使一个星期的商品销售利润最大?解

由(1)得,f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:12345x[0,2)2(2,12)12(12,21]f′(x)-0+0-f(x)↘极小值↗极大值↘故当x=12时,f(x)取得极大值.因为f(0)=9072,f(12)=11664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论