




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省庆阳市宁县中2024届数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数有零点,则实数的取值范围为()A. B. C. D.2.各棱长均为的三棱锥的表面积为()A. B. C. D.3.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.4.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元5.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.86.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水7.已知平面四边形满足,,,则的长为()A.2 B. C. D.8.内角,,的对边分别为,,.已知,,,则这样的三角形有()A.0个 B.1个 C.2个 D.1个或2个9.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.10.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+2二、填空题:本大题共6小题,每小题5分,共30分。11.已知的三边分别是,且面积,则角__________.12.已知,,,,则______.13.函数的定义域为____________.14.点与点关于直线对称,则直线的方程为______.15.计算__________.16.已知x、y满足约束条件,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在区间内随机取两个数,则关于的一元二次方程有实数根的概率为__________.18.平面内给定三个向量=(3,2),=(-1,2),=(4,1).(1)求满足的实数m,n;(2)若,求实数k;19.已知长方体中,,点N是AB的中点,点M是的中点.建立如图所示的空间直角坐标系.(1)写出点的坐标;(2)求线段的长度;(3)判断直线与直线是否互相垂直,说明理由.20.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.21.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【题目详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【题目点拨】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.2、C【解题分析】
判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【题目详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,
所以C选项是正确的.【题目点拨】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.3、C【解题分析】
先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【题目详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.4、C【解题分析】
计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【题目详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【题目点拨】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.5、A【解题分析】
根据平均数相同求出x的值,再根据方差的定义计算即可.【题目详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【题目点拨】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.6、B【解题分析】
降水概率指的是降水的可能性,根据概率的意义作出判断即可.【题目详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【题目点拨】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.7、B【解题分析】
先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【题目详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【题目点拨】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.8、C【解题分析】
根据和的大小关系,判断出解的个数.【题目详解】由于,所以,故解的个数有两个.如图所示两个解.故选:C【题目点拨】本小题主要考查正弦定理的运用过程中,三角形解的个数判断,属于基础题.9、B【解题分析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【题目详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【题目点拨】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】
直接利用等差数列公式解方程组得到答案.【题目详解】aaa1故答案选C【题目点拨】本题考查了等差数列的通项公式,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.12、【解题分析】
先求出的平方值,再开方得到所求结果.【题目详解】【题目点拨】本题考查求解复合向量模长的问题,求解此类问题的关键是先求模长的平方,将其转化为已知向量运算的问题.13、【解题分析】
先将和分别解出来,然后求交集即可【题目详解】要使,则有且由得由得因为所以原函数的定义域为故答案为:【题目点拨】解三角不等式的方法:1.在单位圆中利用三角函数线,2.利用三角函数的图像14、【解题分析】
根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【题目详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【题目点拨】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.15、【解题分析】
采用分离常数法对所给极限式变形,可得到极限值.【题目详解】.【题目点拨】本题考查分离常数法求极限,难度较易.16、-3【解题分析】
作出可行域,目标函数过点时,取得最小值.【题目详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【题目点拨】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】试题分析:解:在平面直角坐标系中,以轴和轴分别表示的值,因为m、n是中任意取的两个数,所以点与右图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件表示方程有实根,则事件,所对应的区域为图中的阴影部分,且阴影部分的面积为.故由几何概型公式得,即关于的一元二次方程有实根的概率为.考点:本题主要考查几何概型概率的计算.点评:几何概型概率的计算,关键是明确基本事件空间及发生事件的几何度量,有面积、体积、角度数、线段长度等.本题涉及到了线性规划问题中平面区域.18、(1);(2).【解题分析】
(1)由及已知得,由此列方程组能求出实数;(2)由,可得,由此能求出的值.【题目详解】(1)由题意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【题目点拨】本题主要考查相等向量与共线向量的性质,属于简单题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.19、(1),,;(2)线段的长度分别为;(3)不垂直,理由见解析【解题分析】
(1)由已知条件,利用长方体的结构特征,能求出点的坐标.
(2)直接利用两点间距离公式公式求解.(3)求出,,计算数量积即可判断是否垂直.【题目详解】解:(1)两直线垂直,证明:由于为坐标原点,所以,由得:,因为点N是AB的中点,点M是的中点,,;(2)由两点距离公式得:,;(3)直线与直线不垂直,理由:由(1)中各点坐标得:,,与不垂直,所以直线与直线不垂直.【题目点拨】本题考查空间中点的坐标的求法,考查线段长的求法,以及利用向量的坐标运算判断垂直,解题时要认真审题,注意空间思维能力的培养.20、(Ⅰ)或(Ⅱ)【解题分析】
(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【题目详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【题目点拨】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中途入股合作合同范例
- 兑旅店合同样本
- 关于借款人合同样本
- 地产投资企业合并合同(2篇)
- 产品联合出品合同标准文本
- 个人订购合同标准文本
- 公司往来款合同标准文本
- 信贷经理签约合同标准文本
- epc垫资合同范例
- 中空铝条销售合同标准文本
- 2025-2030中国面巾纸行业运营模式与竞争格局分析研究报告
- 2025年各地低空经济政策汇编
- 希沃白板5考题及答案
- 邢台2025年河北邢台市高层次人才引进1025人笔试历年参考题库附带答案详解
- 第三单元 圆柱与圆锥 单元测试(含答案)2024-2025学年六年级下册数学人教版
- XX乡镇履职事项清单表(1356项)
- 2025年共青团入团考试测试题库及答案
- 2021年同等学力申硕《临床医学》试题真题及答案
- 地铁保安服务投标方案(技术方案)
- 《企业研发费用税前加计扣除政策解读与应用课件》
- 2025年湖北国土资源职业学院单招职业技能测试题库及答案一套
评论
0/150
提交评论