版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省濮阳市油田三高2023-2024学年高三上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则()A. B.C. D.2.集合中含有的元素个数为()A.4 B.6 C.8 D.123.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.4.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.5.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.56.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.7.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.68.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.9.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.10.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.在原点附近的部分图象大概是()A. B.C. D.12.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,在区间上随机取一个数,则使得≥0的概率为.14.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.15.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).16.在中,内角的对边长分别为,已知,且,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在三棱锥中,,,,点为中点.(1)求证:平面平面;(2)若点为中点,求平面与平面所成锐二面角的余弦值.18.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.19.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.20.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.22.(10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先由得或,再计算即可.【详解】由得或,,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.2、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B3、D【解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.4、C【解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.5、A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.6、D【解析】
由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.7、B【解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.8、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.9、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.10、A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.11、A【解析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.12、B【解析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.14、【解析】
直接计算得到答案,根据题意得到,,解得答案.【详解】,故,当时,,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.15、135【解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.16、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析.(2)【解析】
(1)通过证明平面,证得,证得,由此证得平面,进而证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】(1)因为,所以平面,因为平面,所以.因为,点为中点,所以.因为,所以平面.因为平面,所以平面平面.(2)以点为坐标原点,直线分别为轴,轴,过点与平面垂直的直线为轴,建立空间直角坐标系,则,,,,,,,,,,设平面的一个法向量,则即取,则,,所以,设平面的一个法向量,则即取,则,,所以,设平面与平面所成锐二面角为,则.所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1),;(2)证明见解析.【解析】
(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.19、(1)(2)【解析】
(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【详解】(1)当时,,即,无解;当时,,即,得;当时,,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的最小值为.【点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.20、(1)证明见详解;(2)证明见详解【解析】
(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.21、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】
先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.22、(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育学题库练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 2023年眼镜类产品及其零部件和眼镜盒资金需求报告
- 第41章 氨基甙类抗生素课件
- 社区消防安全集中除患攻坚大整治工作总结
- 运动会入场式方案
- 2024年拍卖交易协议模板集锦
- 2024年设计师服务结束协议模板
- 2024年度防洪排水项目施工协议
- 2024年劳动协议格式与条款汇编
- 《2023级学生手册》奖、惩资助、文明部分学习通超星期末考试答案章节答案2024年
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 期末知识点复习 2024-2025学年统编版语文九年级上册
- 《江苏省一年级上学期数学第二单元试卷》
- 上海市普通高中学业水平合格性考试地理基础知识点复习提纲
- 废旧风机叶片循环利用项目可行性研究报告-积极稳妥推进碳达峰碳中和
- 中医脑病科缺血性中风(脑梗死恢复期)中医诊疗方案临床疗效分析总结
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 《甘肃省中医康复中心建设标准(2021版)》
- 高中英语外刊-小猫钓鱼50篇
- PowerPoint培训教程课件
评论
0/150
提交评论