




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西柳州铁路第一中学2024年数学高三上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.842.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.3.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.4.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.5.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④7.已知,,由程序框图输出的为()A.1 B.0 C. D.8.若数列满足且,则使的的值为()A. B. C. D.9.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.10.已知随机变量的分布列是则()A. B. C. D.11.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.12.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_________.14.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.15.已知,为虚数单位,且,则=_____.16.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.18.(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.(1)证明:;(2)若的面积,求的取值范围.19.(12分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.20.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.21.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.22.(10分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2、D【解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.3、D【解析】
利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.4、A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.5、D【解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.6、B【解析】
利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.8、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.9、C【解析】
在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.10、C【解析】
利用分布列求出,求出期望,再利用期望的性质可求得结果.【详解】由分布列的性质可得,得,所以,,因此,.故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.11、C【解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.12、C【解析】
设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,,,,存在点,使得,,即,,,,故答案为:【点睛】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.14、【解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.【详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,,,侧棱底面,则该几何体的体积为,,,因此,该棱锥的最长棱的长度为.故答案为:;.【点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.15、4【解析】
解:利用复数相等,可知由有.16、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x2=4y.(2).【解析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时取“=”号,即x02=4+2,此时,p=.所以的最小值为2+1.考点:求抛物线的方程,与抛物线有关的最值问题.18、(1)见解析;(2).【解析】
(1)设点、,求出直线、的方程,与抛物线的方程联立,求出点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,,,代入直线的方程,得,解得,同理,可得,,,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,,,,,,同理,得,,由,整理得,由韦达定理得,,,得,设点到直线的高为,则,,,,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题.19、(1)(2)是定值,详见解析【解析】
(1)根据长轴长为,离心率,则有求解.(2)设,则,直线,令得,,则,直线,令,得,则,再根据求解.【详解】(1)依题意得,解得,则椭圆的方程.(2)设,则,直线,令得,,则,直线,令,得,则,.【点睛】本题主要考查椭圆的方程及直线与椭圆的位置关系,还考查了平面几何知识和运算求解的能力,属于中档题.20、(1).(2)【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.21、(1),(2)0【解析】
(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解.【详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即.(2)把为参数)代入,得.,..解得:,即,满足△..【点睛】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题.22、(1);(2)【解析】
(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,,点,则可得过点的拋物线的切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年管束项目投资价值分析报告
- 能见度测量规范
- 2025至2030年油滚筒项目投资价值分析报告
- 2025至2030年无卡审片工作站项目投资价值分析报告
- 2025至2030年恒功率并联电热带项目投资价值分析报告
- PLC综合系统设计-PLC主从站通信系统设计
- 2025至2030年中国移动电源行业深度调研及投资战略分析报告
- 2025年铁质手电筒项目可行性研究报告
- 环卫一体化提升项目发展潜力分析报告
- 2025年植物化学品项目可行性研究报告
- 《copd疾病知识》课件
- 【化学】常见的盐(第2课时)-2024-2025学年九年级化学下册(人教版2024)
- 2025年中国国新基金管理有限公司招聘笔试参考题库含答案解析
- 《不断发展的人工产品》(说课稿)-2023-2024学年科学二年级下册人教鄂教版
- 第19课 资本主义国家的新变化 说课稿-2024-2025学年高一统编版2019必修中外历史纲要下册
- 土石方施工合同协议书
- 《nike的品牌发展史》课件
- 口腔门诊接待流程
- 2025年上半年下半年中国南水北调集团东线限公司招聘工作人员拟聘人员易考易错模拟试题(共500题)试卷后附参考答案
- 药店零售医疗器械规章制度
- 枣庄科技职业学院《客户服务管理》2023-2024学年第一学期期末试卷
评论
0/150
提交评论