版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题03全等模型-手拉手模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(手拉手(旋转)模型)进行梳理及对应试题分析,方便掌握。模型1.手拉手模型(三角形)【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。【常见模型及证法】(等边)(等腰直角)(等腰)例1.(2023春·江苏·八年级专题练习)如图,是等边三角形内一点,将线段绕点顺时针旋转,得到线段,连接,.(1)求证:;(2)连接,若,求的度数.【答案】(1)见解析(2)【分析】(1)由等边三角形的性质知,,由旋转的性质知,,从而得,再证可得答案;(2)由,知为等边三角形,即,继而由,得到,再利用即可得解.【详解】(1)证明:是等边三角形,,.线段绕点顺时针旋转,得到线段,,...在和中,,.(2)解:如图,,,为等边三角形.,,..【点睛】本题主要考查等边三角形的性质和旋转的性质及全等三角形的判定与性质,熟练掌握旋转的性质证得三角形的全等是解题的关键.例2.(2022秋·福建龙岩·九年级校考阶段练习)如图,在边长为8的等边△ABC中,点D是AB的中点,点E是平面上△ABC外一点,且DE=2,连接BE,将线段EB绕点E顺时针旋转60°得到线段EF,连接AF,CE.
(1)判断△BEF的形状,并说明理由;(2)求证:AF=CE;(3)当点D,E,F在同一直线上时,请你在备用图中画出符合条件的图形,并求出此时BE的长.备用图【答案】(1)△BEF是等边三角形(2)证明见解析(3)【分析】(1)根据旋转即可证明△BEF是等边三角形;(2)由△EBF是等边三角形,可得FB=EB,再证明∠FBA=∠EBC,又因为AB=BC,所以可证明△FBA≌△EBC,进而可得AF=CE;(3)当点D,E,F在同一直线上时,过B作BM⊥EF于M,再在Rt△BMD中利用勾股定理列方程求解即可.(1)∵将线段EB绕点E顺时针旋转60°得到线段EF,∴EB=EF,∴△BEF是等边三角形(2)∵等边△ABC和△BEF∴BF=BE,AB=BC,∴即∠FBA=∠EBC∴△FBA≌△EBC(SAS)∴AF=CE(3)图形如图所示:过B作BM⊥EF于M,∵△BEF是等边三角形∴,∵点D是AB的中点,∴在Rt△BMD中,∵DE=2∴解得或(舍去)∴【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理的运用,旋转的性质,等边三角形的判定和性质,解一元二次方程,利用手拉手模型构造全等三角形是解题的关键.例3.(2022·吉林·九年级期末)如图①,在中,,,点,分别在边,上,且,此时,成立.(1)将绕点逆时针旋转时,在图②中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将绕点逆时针旋转一周的过程中,当,,三点在同一条直线上时,请直接写出的长度.【答案】(1)补充图形见解析;;(2),仍然成立,证明见解析;(3)或.【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,∠1=∠2,再根据∠1+∠3+∠4=90°得∠2∠3+∠4=90°,从而可得出结论;(3)分两种情况,运用勾股定理求解即可.【详解】解:(1)如图所示,根据题意得,点D在BC上,∴是直角三角形,且BC=,CE=由勾股定理得,;(2),仍然成立.证明:延长交于点,∵,,,∴,又∵,,∴,∴,,在中,,∴,∴,∴.(3)①当点D在AC上方时,如图1所示,同(2)可得∴AD=BE
同理可证在Rt△CDE中,∴DE=在Rt△ACB中,∴设AD=BE=x,在Rt△ABE中,∴解得,∴②当点D在AC下方时,如图2所示,同(2)可得∴AD=BE
同理可证在Rt△CDE中,∴DE=在Rt△ACB中,∴设AD=BE=x,在Rt△ABE中,∴解得,∴.所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键.例4.(2022·黑龙江·虎林市九年级期末)已知Rt△ABC中,AC=BC,∠ACB=90°,F为AB边的中点,且DF=EF,∠DFE=90°,D是BC上一个动点.如图1,当D与C重合时,易证:CD2+DB2=2DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD2+DB2=2DF2;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论.【详解】解:(1)CD2+DB2=2DF2证明:∵DF=EF,∠DFE=90°,∴∴连接CF,BE,如图∵△ABC是等腰直角三角形,F为斜边AB的中点∴,即∴,又∴在和中∴∴,∴∴∵,∴CD2+DB2=2DF2;(2)CD2+DB2=2DF2证明:连接CF、BE∵CF=BF,DF=EF又∵∠DFC+∠CFE=∠EFB+∠CFB=90°∴∠DFC=∠EFB∴△DFC≌△EFB
∴CD=BE,∠DCF=∠EBF=135°∵∠EBD=∠EBF-∠FBD=135°-45°=90°在Rt△DBE中,BE2+DB2=DE2∵DE2=2DF2∴CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例5.(2022·山西大同·九年级期中)综合与实践:已知是等腰三角形,.(1)特殊情形:如图1,当∥时,______.(填“>”“<”或“=”);(2)发现结论:若将图1中的绕点顺时针旋转()到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点是等腰直角三角形内一点,,且,,,求的度数”时,小明发现可以利用旋转的知识,将绕点顺时针旋转90°得到,连接,构造新图形解决问题.请你根据小明的发现直接写出的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA=135°.【分析】(1)由DE∥BC,得到∠ADE=∠B,∠AED=∠C,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△APB≌△AEC,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEC是直角三角形,在简单计算即可.【详解】解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∵AB=AC,∴∠B=∠C,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,故答案为:=;(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;(3)如图,将△APB绕点A旋转90°得△AEC,连接PE,∴△APB≌△AEC,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt△PAE中,由勾股定理可得,PE=2,在△PEC中,PE2=(2)2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB≌△AEC,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.模型2.手拉手模型(正多边形型)【模型解读】将两个多边形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个多边形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。【常见模型及证法】如图,在任意△ABC中,分别以AB、AC为边作正方形ABDE、ACFG,连接EC、BG,则△AEC≌△ABG.例1.(2023春·浙江·八年级专题练习)边长为4的正方形ABCD与边长为2的正方形CEFG如图1摆放,将正方形CEFG绕点C顺时针旋转,旋转角为α,连接BG,DE.(1)如图2,求证:△BCG≌△DCE;(2)如图2,连接DG,BE,判断DG2+BE2否为定值.若是,求这个定值若不是,说明理由;(3)如图3,当点G恰好落在DE上时,求α的值.【答案】(1)见解析;(2)48;(3)【分析】(1)通过边角边判定三角形全等;(2)连接,设交于点,交于点,先证明,由勾股定理可得;(3)作于点,则,且,由含30度角的直角三角形的性质求解.【详解】(1)四边形与为正方形,,,,,,在和中,(SAS),(2)连接,设交于点,交于点,,,,在△和中,,,,,由勾股定理得,,,,,,,(3)作于点,如图,△为等腰直角三角形,,且,在中,,,,..【点睛】本题考查四边形与三角形的综合问题,解题关键是熟练掌握正方形与直角三角形的性质,通过添加辅助线求解.例2.(2023·河南鹤壁市八年级月考)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是.(2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.【答案】(1)BE=CD;(2)BE=CD,理由见解析;【分析】(1)利用等边三角形的性质得出,然后有,再利用SAS即可证明,则有;(2)利用正方形的性质得出,然后有,再利用SAS即可证明,则有;【详解】(1)如图1所示:和都是等边三角形,,,即,在和中,,.(2),四边形和均为正方形,,,,,在和中,,,例3.(2023·福建福州市·九年级月考)如图,和均为等边三角形,连接BE、CD.(1)请判断:线段BE与CD的大小关系是;(2)观察图,当和分别绕点A旋转时,BE、CD之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是___________,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB1与EE1的关系是;它们分别在哪两个全等三角形中;请在如图中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?【答案】(1)BE=CD(2)线段BE与CD的大小关系不会改变(3)AE=CG,证明见解析(4)这些结论可以推广到任意正多边形.如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.图形见解析.【分析】本题是变式拓展题,图形由简单到复杂,需要从简单图形中探讨解题方法,并借鉴用到复杂图形中;证明三角形全等时,用旋转变换寻找三角形全等的条件.【详解】(1)线段BE与CD的大小关系是BE=CD;(2)线段BE与CD的大小关系不会改变;
(3)AE=CG.证明:如图4,正方形ABCD与正方形DEFG中,
∵AD=CD,DE=DG,∠ADC=∠GDE=90°,
又∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG,∴AE=CG.
(4)这些结论可以推广到任意正多边形.
如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.【点睛】本题综合考查全等三角形、等边三角形和多边形有关知识.注意对三角形全等的证明方法的发散.例4.(2023·江苏无锡·八年级校考阶段练习)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点.(正多边形的各边相等,各个内角也相等)①如图1,求证:△ABE≌△ADC;②探究:如图1,∠BOD=;③如图2,∠BOD=;④如图3,∠BOD=.【答案】①见解析;②60°;③90°;④108°【分析】①根据等边三角形的性质可以得出△ABE≌△ADC.②③④根据△ABE≌△ADC可得∠CDA=∠EBA,根据三角形内角和可得∠BOD=∠BAD,从而求解.【详解】解:①证明:如图,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△ABE和△ADC中,,∴△ABE≌△ADC(SAS);②,,∵∠AFD=∠OFB,∴∠BOD=∠BAD=60°;③如图,四边形和四边形是正方形,,,,,,即,在和中,,,,∵∠AHB=∠OHD,∴∠BOD=∠BAD=90°;④如图,五边形和五边形是正五边形,,,,,,,在和中,,,,∵∠AMB=∠OMD,∴∠BOD=∠BAD=(5-2)×180°÷5=108°.【点睛】本题考查了等边三角形的性质的运用,正方形的性质的运用,正五边形的性质的运用及正边形的性质的运用,全等三角形的判定及性质的运用,解答时根据正多边形的性质证明三角形全等是关键.课后专项训练1.(2023·重庆·七年级重庆八中校考期中)如图:,,,,连接与交于,则:①;②;③;正确的有(
)个A.0 B.1 C.2 D.3【答案】D【分析】利用垂直的定义得到,则,于是可对①进行判断;利用“”可证明,于是可对②进行判断;利用全等的性质得到,则根据三角形内角和和对顶角相等得到,于是可对③进行判断.【详解】解:,,,,,即,所以①正确;在和中,,,所以②正确;,∵∠AFD=∠MFB,,,所以③正确.故选:.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.2.(2022·湖南·中考真题)如图,点是等边三角形内一点,,,,则与的面积之和为(
)A. B. C. D.【答案】C【分析】将绕点B顺时针旋转得,连接,得到是等边三角形,再利用勾股定理的逆定理可得,从而求解.【详解】解:将绕点顺时针旋转得,连接,,,,是等边三角形,,∵,,,,与的面积之和为.故选:C.【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将与的面积之和转化为,是解题的关键.3.(2022·江苏·八年级专题练习)如图,O为正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①可由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+2;⑤,其中正确的是(
)A.①②③ B.①②③⑤ C.①②③④ D.①②③④⑤【答案】B【分析】根据旋转的性质,易证,故①正确;证明是等边三角形,故②说法正确;由勾股定理的逆定理可证得,结合等边三角形性质,有,故,③说法正确;由直角三角形和等边三角形的性质,可得,④说法错误;将线段OA以点A为旋转中心逆时针旋转60°得到线段AD,连接OD,过A作AE⊥CD交CD延长线于点E,根据判断④的方法,判断⑤说法正确.【详解】解:∵将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴,,∵正△ABC,∴,,∵,∴,即,在与中,∵,∴,故可由△BOC绕点B逆时针旋转60°得到,①说法正确,符合题意;如图1,连接∵,,∴是等边三角形,∵,∴.故点O与O′的距离为4,②说法正确,符合题意;∵,∴,∵,∴,∵,,∴,∴,∵是等边三角形,∴,∵.故③说法正确,符合题意;如图2,过作于点,∵是等边三角形,,,∴,∴.∵,,,∴.∵,,,∴.∴.故④说法错误,不符合题意;将线段OA以点A为旋转中心逆时针旋转60°得到线段AD,连接OD,过A作AE⊥CD交CD延长线于点E,∵将线段OA以点A为旋转中心逆时针旋转60°得到线段AD,∴,,∵正△ABC,∴,,∵,∴,即,在与中,∵,∴,∴.∵,,∴是等边三角形.∵,∴易求.∵是等边三角形,,∴,∵,,∴,∵,∴,∴.∵,,∴.∴.∵,,∴,∴.∵,,∴,∴,∵,∴,∵,∴,∴.故⑤说法正确,符合题意;综上,正确的说法有①②③⑤,故选:B.【点睛】本题考查了旋转的性质,全等三角形判定,等边三角形性质以及勾股定理以及逆定理,综合运用以上知识是解题的关键.4.(2022·福建·福州九年级期末)如图,△ABC是等边三角形,且,点D在边BC上,连按AD,将线段AD绕点A顺时针旋转60°,得到线段AE,连接DE,BE.则△BED的周长最小值是_________.【答案】##【分析】根据旋转可得AD=AE,∠DAE=60°,进而得出△ADE为等边三角形,则DE=AD,根据“SAS”可证△ACD≌△ABE,可得CD=BE,而△BED的周长为BD+BE+DE=BD+CD+AD=BC+AD,当AD⊥BC时,AD最小,△BED的周长最小,然后求出AD的最小值即可解答.【详解】解:∵线段AD绕点A顺时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD,∵△ABC是等边三角形,AB=4,∴AB=AC,∠BAC=60°,BC=AB=4,∴∠BAC=∠DAE,∴∠CAD=∠BAE,∴△ACD≌△ABE,∴CD=BE,∴△BED的周长为BD+BE+DE=BD+CD+AD=BC+AD,∴当AD最小时,△BED的周长最小,当AD⊥BC,时,AD最小,过A作AM⊥BC于M,∴BM=BC=2,∴AM=,∴AD的最小值为,∴△BED的周长最小值是4+.故答案为:4+.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,勾股定理等知识,将求△BED的周长最小值转化求AD的最小值是解题的关键.5.(2022秋·江苏·八年级专题练习)如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.【答案】(1)见解析(2)见解析(3)PE=AP+PD,见解析【分析】(1)由“SAS”可证△BAD≌△CAE,可得BD=CE;(2)由全等三角形的性质可得S△BAD=S△CAE,由三角形面积公式可得AH=AF,由角平分线的性质可得AP平分∠BPE;(3)由全等三角形的性质可得∠BDA=∠CEA,由“SAS”可证△AOE≌△APD,可得AO=AP,可证△APO是等边三角形,可得AP=PO,可得PE=AP+PD,即可求解.【详解】(1)证明:∵∠BAC=∠DAE=α,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)证明:如图,过点A作AH⊥BD,AF⊥CE,∵△BAD≌△CAE,∴S△BAD=S△CAE,BD=CE,∴BD×AH=CE×AF,∴AH=AF,又∵AH⊥BD,AF⊥CE,∴AP平分∠BPE;(3)解:PE=AP+PD,理由如下:如图,在线段PE上截取OE=PD,连接AO,∵△BAD≌△CAE,∴∠BDA=∠CEA,又∵OE=PD,AE=AD,∴△AOE≌△APD(SAS),∴AP=AO,∵∠BDA=∠CEA,∠PND=∠ANE,∴∠NPD=∠DAE=α=60°,∴∠BPE=180°-∠NPD=180°-60°=120°,又∵AP平分∠BPE,∴∠APO=60°,又∵AP=AO,∴△APO是等边三角形,∴AP=PO,∵PE=PO+OE,∴PE=AP+PD.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质以及角之间的关系,证明△BAD≌△CAE是解本题的关键.6.(2023春·山东东营·七年级校考阶段练习)在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”兴趣小组进行了如下探究:(1)如图1,两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是,此时BD和CE的数量关系是;(2)如图2,两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由;(3)如图3,已知△ABC,请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数.【答案】(1)△AEC,BD=CE;(2)BD=CE且BD⊥CE,理由见解析;(3)作图见解析,BE=CD,∠PBC+∠PCB=60°.【分析】(1)根据SAS证明两个三角形全等即可证明;(2)通过条件证明△DAB≌△EAC(SAS),得到∠DBC+∠ECB=90°,即可证明BD⊥CE,从而得到结果;(3)根据已知条件证明△DAC≌△BAE(SAS),即可得到结论.【详解】解:(1)∵AB=AC,AE=AD,∠BAC=∠DAE,∴∠DAE+∠EAB=∠BAC+∠EAB,即,∴△ADB≌△AEC(SAS),∴BD=CE;(2)BD=CE且BD⊥CE;理由如下:因为∠DAE=∠BAC=90°,如图2.所以∠DAE+∠BAE=∠BAC+∠BAE.所以∠DAB=∠EAC.在△DAB和△EAC中,,所以△DAB≌△EAC(SAS).所以BD=CE,∠DBA=∠ECA.因为∠ECA+∠ECB+∠ABC=90°,所以∠DBA+∠ECB+∠ABC=90°.即∠DBC+∠ECB=90°.所以∠BPC=180°-(∠DBC+∠ECB)=90°.所以BD⊥CE.综上所述:BD=CE且BD⊥CE.(3)如图3所示,BE=CD,∠PBC+∠PCB=60°.由图可知,AD=AB,AE=AC,∴∠DAB+∠BAC=∠EAC+∠BAC,即,∴△DAC≌△BAE(SAS),∴BE=CD,,又∵,∴∠ADC+∠BDC=∠ABE+∠BDC=60°,∴∠BPC=∠ABP+∠BDC+∠DBA=120°,
∴∠PBC+∠PCB=60°.【点睛】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键.7.(2022·重庆忠县·九年级期末)已知等腰直角与有公共顶点,,,.现将绕点旋转.(1)如图①,当点,,在同一直线上时,点为的中点,求的长;(2)如图②,连接,.点为的中点,连接交于点,求证:;(3)如图③,点为的中点,以为直角边构造等腰,连接,在绕点旋转过程中,当最小时,直接写出的面积.【答案】(1)(2)见解析(3)【分析】(1)连接并延长交于,可得,,,再运用勾股定理可得结论;(2)延长到,使,连接,据SAS证明得,运用中位线定理证明,再证明,得,故可得结论;(3)据点F在AB上时BN的值最小,求出BN的值,运用等腰直角三角形的性质求出NG和AB,运用三角形面积公式求解即可.(1)连接并延长交于,,点是的中点,,与都是等腰直角三角形,,,,又,,由已知可得,,,;(2)证明:延长到,使,连接,,.,,又,,.即;又,,,,A分别是,的中点,.,,,,;(3)∵AE=AD=4,∠EAF=90°,∴DE=,∵点F是DE的中点,∴AF=DE=2,∴点F在以A为圆心,2为半径的⊙A上移动,如图,当点F在AB上时,BF最小,∵是等腰直角三角形,∴BF最小时,BN也最小,∴的最小值为:AB-AF=此时,∵∴∴∵是等腰直角三角形,∴∴的最小值为:【点睛】本题考查了等腰直角三角形的性质,旋转变换,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形是解决问题的关键.8.(2022·四川省渠县中学八年级期中)在等腰直角△ABC中,∠BAC=90°,AB=AC.点E,F分别在边AC,AB上,且AF=AE,连接BE,CF.M为FC的中点,连接AM.(1)如图(1),试猜想BE和AM的关系,请写出你所得到的结论;(2)如图(2),将△AFE绕点A逆时针方向旋转90°,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,说明理由;(3)如图(3),若将△AFE绕点A逆时针方向旋转后(0<<90),(1)中的结论是还成立吗?请判断并说明理由.【答案】(1),理由见解析(2)仍然成立,理由见解析(3)仍然成立,理由见解析【分析】(1)由已知可证,,由全等三角形的性质可得.在中,由,M为FC的中点,可得,通过等量代换,即有.(2)设,,通过已知条件及整式加法,可得,,,故有.(3)延长至点,使得,连接,证,则,,由已知得,,通过等量代换及平行线性质,推导得出,再证,可得.(1)解:,理由如下:在与中,∵,∴,∴.∵,M为FC的中点,∴,∵,∴.(2)解:(1)中的结论仍然成立,即,理由如下:设,,∵M为FC的中点,∴,∵,∴.∵,,,∴.∵,,,∴.∵,∴.∵,,,∴,∵,∴.(3)解:(1)中的结论仍然成立,即,理由如下:延长至点,使得,连接,∵M为FC的中点,∴,在与中,∵,∴,∴.∵,∴.∵,∴,∴,∴.由题意得,,∵,∴.∵,,∴,∵,∴,∵,∴.在与中,∵,∴,∴,∵,∴,即.【点睛】本题考查了综合运用全等三角形的判定及性质,探究线段之间的数量关系及旋转的性质,熟练掌握三角形全等证明的方法是解题的关键.9.(2022秋·江苏·八年级专题练习)问题发现:如图1,已知为线段上一点,分别以线段,为直角边作等腰直角三角形,,,,连接,,线段,之间的数量关系为______;位置关系为_______.拓展探究:如图2,把绕点逆时针旋转,线段,交于点,则与之间的关系是否仍然成立?请说明理由.【答案】问题发现:,;拓展探究:成立,理由见解析【分析】问题发现:根据题目条件证△ACE≌△DCB,再根据全等三角形的性质即可得出答案;拓展探究:用SAS证,根据全等三角形的性质即可证得.【详解】解:问题发现:延长BD,交AE于点F,如图所示:∵,∴,又∵,∴(SAS),,∵,∴,∴,∴,,故答案为:,;拓展探究:成立.理由如下:设与相交于点,如图1所示:∵,∴,又∵,,∴(SAS),∴,,∵,∴,∴,∴,即,依然成立.【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.10.(2023春·广东揭阳·九年级校考期中)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.(1)如图1求证:AP=BQ;(2)如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP长.【答案】(1)见解析;(2)【分析】(1)根据∠ACB=∠PCQ=90°,可得∠ACP=∠BCQ,再利用SAS,即可求证;(2)根据直角三角形的性质,可得,再由勾股定理,可得,即可求解.【详解】证明:(1)∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ,∵AC=BC,CP=CQ,∴△△ACP≌△BCQ(SAS)∴AP=BQ;(2)如图2中,作CH⊥PQ于H,∵CP=CQ=2,∴,∵∠PCQ=90°,∴,∴,∵AC=4,∴,∵点A、P、Q在同一直线,∴.【点睛】本题主要考查了全等三角形的判定和性质,图形的旋转,勾股定理,二次根式的化简,熟练掌握相关知识点是解题的关键.11.(2022·广东·惠州一中八年级期中)为等边三角形,,于点.为线段上一点,.以为边在直线右侧构造等边.连结,为的中点.(1)如图1,与交于点,①连结,求线段的长;②连结,求的大小.(2)如图2,将绕点逆时针旋转,旋转角为.为线段的中点.连结、.当时,猜想的大小是否为定值,并证明你的结论.【答案】(1)①;②;(2),证明见解析【分析】(1)①根据等边三角形的性质,,可得,是斜边上的中线,勾股定理在中可求得的长,进而求得的长;②根据①的结论可得,根据,即可求得的度数;(2)连接,证明,进而可得,则,进而根据为的中点,为的中点,为的中点,根据三角形中位线定理可得,进而可得【详解】(1)①是等边三角形,,是等边三角形,为的中点②如图,连接,;(2),理由如下,如图,连接,为等边三角形,,则为的中点,为的中点,为的中点【点睛】本题考查了等边三角形的性质,勾股定理,三线合一,直角三角形斜边上的中线等于斜边的,勾股定理,中位线定理,三角形全等的性质与判定,旋转的性质,综合运用以上知识是解题的关键.12.(2022·福建·长汀县八年级阶段练习)在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.(1)观察猜想:
如图(1),DP与CP之间的数量关系是,DP与CP之间的位置关系是.(2)类比探究:将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决:若BC=3BD=3,
将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB时,请直接写出线段CP的长.【答案】(1)PD=PC,PD⊥PC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得,即可求解.【详解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵点P为AE的中点,∴,∴,,∴,∴故答案为:,.(2)结论成立.理由如下:过点P作PT⊥AB交BC的延长线于T,交AC于点O.则∴,∴,,由勾股定理可得:∴∴∴∵点P为AE的中点,∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.则,∴∵∴由(2)可得,,,∴为等腰直角三角形∴∴由勾股定理得,如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.13.(2022·全国·九年级专题练习)如图,正方形ABCD,将边CD绕点D顺逆时针旋转α(0°<α<90°),得到线段DE,连接AE,CE,过点A作AF⊥CE交线段CE的延长线于点F,连接BF.(1)当AE=AB时,求α的度数;(2)求证:∠AEF=45°;(3)求证:AE∥FB.【答案】(1)α=30°;(2)证明见解析;(3)证明见解析.【分析】(1)根据旋转的性质可得CD=DE,由正方形的性质可得AB=CE=AD,根据已知AB=AE,可得出△ADE是等边三角形,求出∠ADE的度数,即可求解;(2)根据旋转的性质得出△CDE和△ADE都是等腰三角形,由题可知旋转角是∠EDC,进而得出∠ADE、∠AED、∠CED与α之间的关系,再根据平角的特点即可求解;(3)方法一:过点B作AF与CF的垂线,可以得到一个平行四边形,进一步可判定是矩形,根据角度关系得出∠BCF=∠BAF,判定矩形是正方形,得出∠BFC=45°,结合(2)可得出结论;方法二:过点B作BF的垂线交BF于点M,根据垂直的性质和正方形的性质可以得出∠ABF=∠CBM,∠BAF=∠BCF,AB=BC,进而判定两个三角形全等,可得出△BFM是等腰直角三角形,求出∠BFE=45°,结合(2)可得出结论;方法三:取AC的中点O,根据直角三角形的性质和正方形的性质,可得出OA=OC=OB=OF,所以A、B、C、F在同一个圆上,∠CBF=∠BAC=45°,结合(2)即可得出结论.【详解】解:(1)在正方形ABCD中,AB=AD=DC,由旋转可知,DC=DE,∵AE=AB∴AE=AD=DE∴△AED是等边三角形,∴∠ADE=60°,∴∠ADC=90°,∴α=∠ADC-∠ADE=90°-60°=30°.(2)证明:在△CDE中,DC=DE,∴∠DCE=∠DEC=,在△ADE中,AD=ED,∠ADE=90°-α,∴∠DAE=∠DEA=∴∠AEC=∠DEC+∠DEA==135°.∴∠AEF=45°,(3)证明:过点B作BG//CF与AF的延长线交于点G,过点B作BH//GF与CF交于点H,则四边形BGFH是平行四边形,∵AF⊥CE,∴平行四边形BGFH是矩形,∵∠AFP=∠ABC=90°,∠APF=∠BPC,∴∠GAB=BCP,在△ABG和△CBH中∴△ABG≌△CBH(AAS),∴BG=BH,∴矩形BGFH是正方形,∴∠HFB=45°,由(2)可知:∠AEF=45°∴∠HFB=∠AEF=45°,∴AE∥FB.方法2:过点B作BM⊥BF交FC于点M,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠FBN+∠ABM=∠ABM+∠MBC=90°,∴∠FBN=∠MBC,∵AF⊥FC,∴∠AFC=90°,又∴∠AFP=∠PBC,∠FPA=∠BPC∴∠FAB=BCM,在△ABF和△CBM中,∴△ABF≌△CBM(ASA),∴BF=BM,∴△FBM是等腰直角三角形,∴∠MFB=45°,由(2)可知:∠AEF=45°∴∠MFB=∠AEF=45°,∴AE∥FB.方法3:取AC的中点为点O,∵AF⊥FC,∠ABC=90°∴OA=OB=OC=OF·∴点A,B,C,F都在同一个圆上,∴∠BFC=∠BAC=45°·由(2)可知:∠AEF=45°∴∠MFB=∠AEF=45°,∴AE∥FB.【点睛】本题考查了旋转的性质、正方形的性质、平行线的判定;根据特殊图形得出角的度数;根据图形的特点,得出角之间的关系,三个角相加等于180°,得出结果;作辅助线求出∠BFC的度数,结合第二问的结果得出证明.14.(2022·河南·方城县一模)在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图(1)所示.则CF的长为.(直接写出结果,不说明理由)(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图(2)所示.在点E从点C到点A的运动过程中,求点F所经过的路径长.思路梳理并填空:当点E不与点A重合时,如图,连结CF,∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴①∠ABE+=∠CBF+;∴∠ABE=∠CBF∴△ABE≌△CBF∴∠BAE=∠BCF=60°又∠ABC=60°∴∠BCF=∠ABC∴②______∥______;当点E在点A处时,点F与点C重合.当点E在点C处时,CF=CA.∴③点F所经过的路径长为.(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图(3)所示.在点M从点C到点D的运动过程中,求点N所经过的路径长.(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F,G都在直线AE上,如图(4).当点E到达点B时,点F,G,H与点B重合.则点H所经过的路径长为.(直接写出结果,不说明理由)【答案】(1)1(2)①∠CBE;∠CBE;
②CF;AB;③3(3)点N所经过的路径长为(4)【分析】(1)证明△ABE≌△CBF,则CF=AE=1,问题即解决;(2)读懂每步推理的依据,即可完成;(3)取BC的中点H,连结DH,NH,证明△BDM≌△BHN,则当点M在点C处时,NH⊥BC,且NH=CD,此时在直角△ACD
中即可求得CD的长,从而求得结果;(4)当E、B不重合时,取BC的中点M,连结MH,CH,可证△BFA≌△BHC,可得H、G、C三点共线,可得;当点E在C处时,MH⊥BC,所以可确定点H所经过的路径,从而求得路径长.(1)∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴∠ABE+∠EBC=∠CBF+∠EBC∴∠ABE=∠CBF∴△ABE≌△CBF∴CF=AE=1故答案为:1(2)当点E不与点A重合时,如图,连结CF,∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴∠ABE+∠EBC=∠CBF+∠EBC∴∠ABE=∠CBF∴△ABE≌△CBF∴∠BAE=∠BCF=60°又∠ABC=60°∴∠BCF=∠ABC∴CF∥AB当点E在点A处时,点F与点C重合.当点E在点C处时,CF=CA.∴点F所经过的路径长为3.故答案为:①∠EBC,∠EBC;②CF,AB;③3(3)如图(3),取BC的中点H,连结DH,NH,则∵△ABC是等边三角形,CD⊥AB∴∠ABC=60°,AB=BC,∴BD=BH∴△BDH是等边三角形∵△BMN是等边三角形由(2)知△BDM≌△BHN∴∠BHN=∠BDM=90°即NH⊥BC当点M在点D处时,点N与点H重合,当点M在点C处时,NH⊥BC,且NH=CD在Rt△ACD中,∠A=60°,AC=3∴CD=3×=所以点N所经过的路径长为.(4)如图①,当点E不与点B重合时,取BC的中点M,连结MH,CH由四边形ABCD和四边形BFGH都是正方形∴AB=BC,BF=BH,∠ABC=∠FBH=∠BHG=90°∴∠ABF=∠CBH∴△BFA≌△BHC∴∠BFA=∠BHC=90°∵∠BHG=90°∴H、G、C三点共线∵MH是直角△BCH斜边上的中线∴当点E在C处时,如图②,MH⊥BC,所以点H所经过的路径长为:以点M为圆心,半径为,圆心角为90°的弧此时弧长为:故答案为:【点睛】本题是三角形全等的综合,考查了正方形的性质,等边三角形的性质,全等三角形的判定与性质,弧长的计算等知识;关键是正确寻找到点的运动路径,这是属于几何压轴题.15.(2022·江苏·八年级课时练习)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.(1)如图1,若,且,,求的度数;(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想.【答案】(1)(2),证明见解析【分析】(1)在射线上取一点,使得,证明,求出,然后根据四边形内角和定理及邻补角的性质得出答案;(2)证明,求出,倍长至,连接,PQ,证明,求出,在CF上截取FP=FB,连接BP,易得为正三角形,然后求出,证,可得PQ=PC,∠QPF=∠CPB=60°,则可得为正三角形,然后由得出结论.(1)解:如图1,在射线上取一点,使得,∵,BC=BC,∴(SAS),∴,∴,∴,∴,∵,∴,∴;(2),证明:∵,,∴△ABC是正三角形,∴AB=BC=AC,∠A=∠DBC=60°,又∵,∴(SAS),∴,∴,∴,倍长至,连接,PQ,∵CN=QN,∠QNF=∠CNM,NF=NM,∴(SAS),∴,∠QFN=∠CMN,由旋转的性质得AC=CM,∴,在CF上截取FP=FB,连接BP,∵,∴,∴为正三角形,∴∠BPF=60°,,∴,∵∠QFN=∠CMN,∴FQ//CM,∴,∴,又∵,∴(SAS),∴PQ=PC,∠QPF=∠CPB=60°,∴为正三角形,∴,即.【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,利用全等三角形转换线段和角的关系从而解决问题,属于压轴题.16.(2022·山西八年级月考)综合与实践特例研究:将矩形和按如图1放置,已知,连接.如图1,当点在上时,线段与之间的数量关系是__;直线与直线之间的位置关系是_;拓广探索:图2是由图1中的矩形绕点顺时针旋转一定角度得到的,请探索线段与之间的数量关系和直线与直线之间的位置关系,并说明理由.【答案】(1);(2),理由见解析【分析】,延长交于点G先证△FBC≌△EDC(SAS),可知,由∠DCE=90º,可得∠DEC+∠CDE=90º,可推出∠FDG+∠GFD=90º即可,先下结论,,再证明,证法与(1)类似,延长交于点交于点.由四边形为矩形且AD=CD可得,可推出.由知.由可用等量代换得由三角形内角和得即可.【详解】解:,延长交于点G,∵四边形为矩形,且AD=DC,∴BC=CD,=90º,由旋转的FC=EC,∴△FBC≌△EDC(SAS),,∵∠DCE=90º,∴∠DEC+∠CDE=90º,∴∠FDG+∠GFD=90º∠FGD=90º,,理由如下:如答图,延长交于点交于点,,四边形为矩形,,,,,矩形为正方形.,在和中,....【点睛】本题考查旋转中两线段的数量与位置关系问题,关键是把两线段置于两个三角形中利用全等解决问题,会利用旋转找全等条件,会计算角的和差,和证垂直的方法.17.(2022·福建八年级期中)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.【答案】(1)①垂直,相等;②成立,理由见解析(2)∠ACB=45°【分析】(1)①证明△DAB≌△FAC,即可得到CF⊥BD,CF=BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.(1)①CF⊥BD,CF=BD∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)∴CF=BD,∠ACF=∠ABD,∵∴∠BCF=90°∴CF⊥BD;故答案为:垂直,相等;②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵,∴△BAD≌△CAF(SAS)∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;(2)当∠ACB=45°时可得CF⊥BC,理由如下:过点A作AC的垂线与CB所在直线交于G∵∠ACB=45°∴AG=AC,∠AGC=∠ACG=45°∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠GCF=∠GCA+∠ACF=90°,∴CF⊥BC.【点睛】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风机生产安装维修合同模板
- 机械买卖定金合同模板
- 2024年泉州二手房标准买卖协议范本一
- 2024年度建筑土方工程承揽协议范本一
- 公司车辆安全合同模板
- 长宁吊车租赁合同模板电话
- 装修尾款支付合同模板
- 冻货配送合同模板
- 高价求购民房合同模板
- 黄金直销合同模板
- SC200200施工升降机拆除施工方案
- DBJ50T-396-2021山地城市地下工程防渗堵漏技术标准
- 订单登记表模板
- 班主任工作经验交流课件1
- (完整)斯坦福-国际标准智商测试(45分钟60题)标准答案
- 沪科版八年级上册数学教学计划及进度表
- 咳嗽(急性支气管炎)中医临床路径住院表单
- 以“感动”为话题作文-完整版PPT
- 标签打印管理办法及流程
- 规范和改进农村宅基地管理业务培训课件
- 特殊疑问词期末复习课件(共29张PPT)
评论
0/150
提交评论