专题03 圆中的重要模型-四点共圆模型(原卷版)_第1页
专题03 圆中的重要模型-四点共圆模型(原卷版)_第2页
专题03 圆中的重要模型-四点共圆模型(原卷版)_第3页
专题03 圆中的重要模型-四点共圆模型(原卷版)_第4页
专题03 圆中的重要模型-四点共圆模型(原卷版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题03圆中的重要模型-四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。本文主要介绍四点共圆的四种重要模型。四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。这也是圆的基本定义,到定点的距离等于定长点的集合。条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.例2.(2022秋·江西赣州·九年级校联考期中)如图,点O为线段AB的中点,点B,C,D到点O的距离相等,连接AC,BD.则下面结论不一定成立的是(

)A.∠ACB=90°B.∠BDC=∠BACC.AC平分∠BADD.∠BCD+∠BAD=180°例3.(2021·湖北随州·统考中考真题)如图,在中,,为的中点,平分交于点,,分别与,交于点,,连接,,则的值为;若,则的值为.例4.(2022·北京·清华附中九年级阶段练习)如图,四边形中,,,则的度数为______.模型2、定边对双直角共圆模型同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A、B、C、D四个点满足,结论:A、B、C、D四点共圆,其中AD为直径。2)定边对双直角模型(异侧型)条件:若平面上A、B、C、D四个点满足,结论:A、B、C、D四点共圆,其中AC为直径。例1.(2022秋·广东梅州·九年级校考阶段练习)如图,在四边形中,,是的中点,是的中点,若,,,则的长为(

A. B. C. D.例2.(2021·湖北鄂州·统考中考真题)如图,四边形中,,,于点.若,,则线段的长为.例3.(2022·浙江嘉兴·二模)如图,四边形ABCD中,∠ABC=∠BCD=90°,AB=1,AE⊥AD,交BC于点E,EA平分∠BED.(1)CD的长是;(2)当点F是AC中点时,四边形ABCD的周长是.例4.(2022·湖北武汉·校考二模)如图,等腰Rt△ABC中,∠ACB=90°,D为BC边上一点,连接AD.(1)如图1,作BE⊥AD延长线于E,连接CE,求证:∠AEC=45°;(2)如图2,P为AD上一点,且∠BPD=45°,连接CP.若AP=2,求△APC的面积;模型3、定边对定角共圆模型条件:如图1,平面上A、B、C、D四个点满足,结论:A、B、C、D四点共圆.条件:如图2,AC、BD交于H,,结论:四点共圆.例1.(2023·江苏·九年级假期作业)如图,在RtABC中,∠BAC=90°,∠ABC=40°,将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上.(1)求∠BAD的度数;(2)求证:A、D、B、E四点共圆.例2.(2022秋·江苏无锡·九年级校考期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,将△ABC绕点A沿顺时针方向旋转后得到△ADE,直线BD、CE相交于点O,连接AO.则下列结论中:①△ABD∽△ACE;②∠COD=135°;③AO⊥BD;④△AOC面积的最大值为8,其中正确的有(

)A.1个 B.2个 C.3个 D.4个例3.(2023·江苏·九年级假期作业)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由例4.(2022·陕西·九年级校考阶段练习)如图,在四边形中,,对角线平分,,且.(1)证明:;(2)若,,求的长.

模型4、对角互补共圆模型条件:如图1,平面上A、B、C、D四个点满足,结论:A、B、C、D四点共圆.条件:如图2,BA、CD的延长线交于P,,结论:A、B、C、D四点共圆.例1.(2022秋·广东惠州·九年级校考阶段练习)如图,将绕点A逆时针旋转,得到,其中点与点对应,点与点对应.(1)画出.(2)直线与直线相交于点,证明:A,,,四点共圆.例2.(2023·江苏·九年级假期作业)如图,中,,平分,,连接,并延长分别交,于点和点,若,,则的长为()A.10 B.12 C.15 D.16例3.(2023·江苏·九年级假期作业)如图,,,点、分别是线段、射线上的动点,以为斜边向上作等腰,,连接,则的最小值为.

例4.(2022春·浙江九年级课时练习)在正方形中,是边上一点,点在射线上,将线段绕点顺时针旋转得到线段,连接,.(1)如图1,求证:;(2)如图2,若点,,三点共线,求证:,,,四点共圆;(3)若点,,三点共线,且,求的长.课后专项训练1.(2023·广西·中考模拟)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.2.(2023秋·河北张家口·九年级校考期末)如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2 B.3 C.4 D.63.(2022秋·北京海淀·九年级校考期中)如图,点O为线段的中点,点B,C,D到点O的距离相等,连接,.请写出图中任意一组互补的角为和(不添加辅助线,不添加数字角标和字母)4.(2022·广东·东莞市九年级期末)如图,在锐角△ABC中,AB=2,AC=,∠ABC=60°.D是平面内一动点,且∠ADB=30°,则CD的最小值是________5.(2022·广西·九年级专题练习)如图所示,,,则___.6.(2022春·九年级课时练习)如图所示,,,求.7.(2023·江苏·九年级假期作业)如图,在中,,,的中点为O.求证:A,B,C,D四点在以O为圆心的圆上.

8.(2023·江苏·九年级假期作业)已知:如图,在正方形中,、分别是、的中点.(1)线段与有何关系.说明理由;(2)延长、交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.9.(2022秋·九年级统考期末)如图,在中,,点为线段一点,连接,将绕点旋转至,连接和().

(1)如图1,若,,点P是延长线一点,连接,若,,,求的长;(2)如图2,,作于点交于点,求证:;(3)如图3,在(2)的条件下,若,点是直线上一动点,连接,当点运动到中点时,将沿翻折至,连接,请直接写出面积的最大值.10.(2022秋·江苏盐城·九年级校考期中)如图,以点为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),,将绕点P旋转,得到.(1)求B、C两点的坐标;(2)请在图中画出线段、,并判断四边形的形状(不必证明),求出点M的坐标;(3)动直线l从与重合的位置开始绕点B顺时针旋转,到与重合时停止,设直线l与交点为E,点Q为的中点,过点E作于G,连接、.请问在旋转过程中的大小是否变化?若不变,求出的度数;若变化,请说明理由.11.(2022·江苏扬州·模拟预测)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠DAB=45°,∠CAB=30°,点O为斜边AB的中点,连接CD交AB于点E.设AB=1.(1)求证:A、B、C、D四个点在以点O为圆心的同一个圆上;(2)分别求△ABC和△ABD的面积;(3)过点D作DF∥BC交AB于点F,求OE︰OF的比值.12.(2022秋·江苏盐城·九年级校考阶段练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C时,两点同时停止运动,连接AE、DF交于点P,设点E.F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于cm?(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.13.(2021·九年级课时练习)如图,四边形内接于,对角线,垂足为,于点,直线与直线于点.(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数.14.(2023·江苏·九年级假期作业)【问题情境】如图①,在四边形中,,求证:A、B、C、D四点共圆.小吉同学的作法如下:连结,取的中点,连结、,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形中,,点是边的中点,点是边上的一个动点,连结,,作于点P.(1)如图②,当点P恰好落在正方形对角线上时,线段的长度为;(2)如图③,过点P分别作于点,于点,连结,则的最小值为.15.(2023·山东日照·统考中考真题)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论.解决以下问题:如图1,中,().点D是边上的一动点(点D不与B,C重合),将线段绕点A顺时针旋转到线段,连接.

(1)求证:A,E,B,D四点共圆;(2)如图2,当时,是四边形的外接圆,求证:是的切线;(3)已知,点M是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论