版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市永年区第二中学2024届数学高三第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.执行如图所示的程序框图,输出的结果为()A. B. C. D.3.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.4.函数在上为增函数,则的值可以是()A.0 B. C. D.5.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是()A.1 B.2 C.3 D.47.若实数、满足,则的最小值是()A. B. C. D.8.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.29.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.6010.已知随机变量的分布列是则()A. B. C. D.11.已知函数,,且,则()A.3 B.3或7 C.5 D.5或812.如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且 B.直线与直线共面,且C.直线与直线异面,且 D.直线与直线共面,且二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最小值是_________,最大值是_________.14.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.15.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.16.若函数为奇函数,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.18.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.19.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.20.(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由.21.(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.22.(10分)设都是正数,且,.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.2、D【解析】
由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.3、A【解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【点睛】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.4、D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.5、D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】
设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.7、D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.8、B【解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.9、D【解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题10、C【解析】
利用分布列求出,求出期望,再利用期望的性质可求得结果.【详解】由分布列的性质可得,得,所以,,因此,.故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.11、B【解析】
根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题12、B【解析】
连接,,,,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,,,,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,,,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.14、【解析】
根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,,,的表达式,再进行数量积的运算,最后求和即可得出结果.【详解】解:以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,,,,则,,,设,,,即点的坐标为,则,,,所以故答案为:【点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.15、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.16、-2【解析】
由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)先由正弦定理,得到,进而可得,再由,即可得出结果;(2)先由余弦定理得,,再根据题中数据,可得,从而可求出,得到,进而可求出结果.【详解】(1)由正弦定理得,所以,因为,所以,即,所以,又因为,所以,.(2)在和中,由余弦定理得,.因为,,,,又因为,即,所以,所以,又因为,所以.所以的面积.【点睛】本题主要考查解三角形,灵活运用正弦定理和余弦定理即可,属于常考题型.18、(1)(2)最大值.【解析】
(1)根据通径和即可求(2)设直线方程为,联立椭圆,利用,用含的式子表示出,用换元,可得,最后用均值不等式求解.【详解】解:(1)依题意有,,,所以椭圆的方程为.(2)设直线的方程为,联立,得.所以,.所以.令,则,所以,因,则,所以,当且仅当,即时取得等号,即四边形面积的最大值.【点睛】考查椭圆方程的求法和椭圆中四边形面积最大值的求法,是难题.19、(1)答案不唯一,具体见解析(2)证明见解析【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.20、(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)线段上是存在一点,,使直线与平面所成的角正弦值为.【解析】
(Ⅰ)取中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面;(Ⅱ)取中点,连结,,推导出平面,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值;(Ⅲ)假设在线段上是存在一点,使直线与平面所成的角正弦值为,设.利用向量法能求出结果.【详解】(Ⅰ)证明:取中点,连结、,是边长为2的等边三角形,,,,点为的中点,,四边形是平行四边形,,平面,平面,平面.(Ⅱ)解:取中点,连结,,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点,平面,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,1,,,0,,,1,,,0,,,,,,0,,,,,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,设二面角的平面角为,则.二面角的余弦值为.(Ⅲ)解:假设在线段上是存在一点,使直线与平面所成的角正弦值为,设.则,,,,,,平面的法向量,,解得,线段上是存在一点,,使直线与平面所成的角正弦值为.【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足正弦值的点是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居民委员会电工保障协议
- 社区停车场租用合同
- 厂区食堂厨师雇佣协议
- 玻璃矿防水施工安全规定
- 2022年云南省各地中考物理模拟试题:力学填空题
- 数据中心合同
- 中南林业科技大学《电机与控制》2022-2023学年期末试卷
- 中南林业科技大学《保险业务综合实验》2023-2024学年第一学期期末试卷
- 中南林业科技大学《Java程序设计》2021-2022学年期末试卷
- 2024企业代理合同样书
- 2024-2030年中国房车行业竞争战略发展趋势预测报告
- 2023年8月26日事业单位联考C类《职业能力倾向测验》试题
- 2023年天津公务员已出天津公务员考试真题
- 施工现场临水施工方案
- 2022年公务员多省联考《申论》真题(四川县乡卷)及答案解析
- 艾滋病职业防护培训
- 全科医生转岗培训结业考核模拟考试试题
- 2025年高考数学专项题型点拨训练之初等数论
- 上海市浦东新区2024-2025学年六年级上学期11月期中数学试题(无答案)
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 通信技术工程师招聘笔试题与参考答案(某世界500强集团)2024年
评论
0/150
提交评论