版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11拥抱模型解直角三角形【精典例题】1、某数学兴趣小组学过锐角三角函数后,到市龙源湖公园测量塑像“夸父追日”的高度,如图所示,在A处测得塑像顶部D的仰角为45°,塑像底部E的仰角为30.1°,再沿AC方向前进10m到达B处,测得塑像顶部D的仰角为59.1°.求塑像“夸父追日”DE高度.(结果精确到0.1m.参考数据:sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)解析:在Rt△ACD中,∠CAD=45°,则AC=CD.设AC=CD=x,则BC=x﹣10,在Rt△BCD中,.∴CD=BC•tan59.1°,∴x=1.67(x﹣10),解得:x≈24.93,在Rt△ACE中,.CE=AC•tan30.1°=24.93×0.58≈14.46,∴DE=DC﹣CE=24.93﹣14.46=10.47≈10.5,答:塑像“夸父追日”DE的高度约为10.5米
2、今年由于防控疫情,师生居家隔离线上学习,AB和CD是社区两栋邻楼的示意图,小华站在自家阳台的C点,测得对面楼顶点A的仰角为30°,地面点E的俯角为45°.点E在线段BD上,测得B,E间距离为8.7米,楼AB高12米.求小华家阳台距地面高度CD的长.(结果精确到1米,≈1.41,≈1.73)解析:作CH⊥AB于H,如图所示:则四边形HBDC为矩形,∴BD=CH,BH=CD,由题意得,∠ACH=30°,∠DCE=45°,设BH=CD=x米,则AH=(12﹣x)米,在Rt△AHC中,∵tan∠ACH==,∴HC=AH=(36﹣x)米,∵∠CDE=90°,∴∠CED=90°﹣45°=45°=∠DCE,∴ED=CD=x米,∵CH=BD=BE+ED∴8.7+x=36﹣x.∵≈1.73,解得x≈10.答:小华家阳台距地面高度CD的长约为10米.
3、数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,eq\r(3)≈1.73)解析:∵∠ACE=90°,∠CAE=34°,CE=55m,∴tan∠CAE=eq\f(CE,AC),∴AC=eq\f(CE,tan34°)≈eq\f(55,0.67)≈82.1(m).∵AB=21m,∴BC=AC-AB≈61.1m.在Rt△BCD中,tan60°=eq\f(CD,BC),∴CD=eq\r(3)BC≈1.73×61.1≈105.7(m),∴DE=CD-EC≈105.7-55≈51(m).答:炎帝塑像DE的高度约为51m.
4、如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°.此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)解析:设B处距离码头O有xkm.在Rt△CAO中,∠CAO=45°,∴CO=AO=45×0.1+x=4.5+x.在Rt△DBO中,∠DBO=58°.∵tan∠DBO=eq\f(DO,BO),∴DO=BO·tan∠DBO=x·tan58°.∵DC=DO-CO,∴36×0.1=x·tan58°-(4.5+x).∴x=eq\f(36×0.1+4.5,tan58°-1)≈eq\f(36×0.1+4.5,1.60-1)=13.5.答:B处距离码头O大约有13.5km.
5、某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为.(参考数据:tan37°≈,tan53°≈)解析:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即,在Rt△AEC中,tan37°=,即,解得x=180,y=135,∴AC===300(m),故答案为:300m.
6、如图,为测量湖面上小船A到公路BC的距离,先在点B处测得小船A在其北偏东60°方向,再沿BC方向前进400m到达点C,测得小船A在其北偏西30°方向,则小船A到公路BC的距离为m.解析:过点A作AD⊥BC,垂足为点D.如图,则∠ADC=90°依题意得:∠ABC=90°﹣60°=30°,∠ACB=90°﹣60°=30°,BC=400m,∴∠BAC=90°∴AC=BC=200m,∵∠DAC=90°﹣60°=30°,∴CD=AC=100m,AD=CD=100m,即小船A到公路BC的距离为100m;故答案为:100.
7、如图,AB为某段长为10km的海岸线,码头B在码头A的东偏北30°方向上,灯塔C在码头B正北方向,码头A正西方向有一艘船D向码头A方向行驶,从船D观测,灯塔C在船D的东偏北37°方向,在灯塔C观测码头A在灯塔C的南偏西30°方向,求此时船D与码头A的距离(精确到0.1km.参考数据:=1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解析:过B作BG⊥AD于G,∵在Rt△ABG中,∠BAG=30°,AB=10km,∴AG=5km,∵在Rt△ACG中,∠ACG=30°,∴CG=km,∵在Rt△DCG中,,∴DG=km,∴DA=20﹣5≈11.3km,答:此时船D与码头A的距离为11.4km.
8、科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版商业租赁协议标准版版A版
- 二零二五版广东省土地估价师协会土地估价师行业专业论坛合同3篇
- 二零二五版健身中心场地租赁及健身赛事举办合同3篇
- 二零二五年度个人合伙房地产合作开发合同样本3篇
- 专业级2024型材料供销协议3
- 天津工艺美术职业学院《电气工程综合实践》2023-2024学年第一学期期末试卷
- 泰山科技学院《工作坊》2023-2024学年第一学期期末试卷
- 苏州科技大学《韩非子》2023-2024学年第一学期期末试卷
- 二零二五年度特种设备安全检验合同规范3篇
- 二零二五年高新技术企业研发补贴及合作协议2篇
- 2025寒假散学典礼(休业式)上校长精彩讲话:以董宇辉的创新、罗振宇的坚持、马龙的热爱启迪未来
- 安徽省示范高中2024-2025学年高一(上)期末综合测试物理试卷(含答案)
- 安徽省合肥市包河区2023-2024学年九年级上学期期末化学试题
- 《酸碱罐区设计规范》编制说明
- PMC主管年终总结报告
- 售楼部保安管理培训
- 仓储培训课件模板
- 2025届高考地理一轮复习第七讲水循环与洋流自主练含解析
- GB/T 44914-2024和田玉分级
- 2024年度企业入驻跨境电商孵化基地合作协议3篇
- 《形势与政策》课程标准
评论
0/150
提交评论