2024届黑龙江省望奎县数学九上期末复习检测试题含解析_第1页
2024届黑龙江省望奎县数学九上期末复习检测试题含解析_第2页
2024届黑龙江省望奎县数学九上期末复习检测试题含解析_第3页
2024届黑龙江省望奎县数学九上期末复习检测试题含解析_第4页
2024届黑龙江省望奎县数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省望奎县数学九上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A. B. C. D.2.关于x的方程有一个根是2,则另一个根等于()A.-4 B. C. D.3.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是()A.B.C.,,三点在同一直线上D.4.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.5.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:26.如图,在四边形ABCD中,ADBC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB,若DG=3,EC=1,则DE的长为()A.2 B. C.2 D.7.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个8.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=09.的值等于()A. B. C.1 D.10.下列方程中,是一元二次方程的是()A.x+=0 B.ax2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=0二、填空题(每小题3分,共24分)11.如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1⊥x轴,垂足为A1,在OA1的延长线上截取A1B1=OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2⊥x轴,垂足为A2,在OA2的延长线上截取A2B2=B1A2,连结P1B1,P2B2,则的值是.12.方程的解是_____________.13.如图,在四边形ABCD中,AB=BD,∠BDA=45°,BC=2,若BD⊥CD于点D,则对角线AC的最大值为___.14.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.15.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.16.如图,菱形的顶点C的坐标为,顶点A在x轴的正半轴上.反比例函数的图象经过顶点B,则k的值为__.17.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=(k≠0)图象上的一点,过点P作PA⊥x轴于点A,点B为AO的中点若△PAB的面积为3,则k的值为_____.18.已知,则__________.三、解答题(共66分)19.(10分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)20.(6分)如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.(1)求证:MC=MQ(2)当BQ=1时,求DM的长;(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.21.(6分)如图是一个横断面为抛物线形状的拱桥,当水面宽(AB)为4m时,拱顶(拱桥洞的最高点)离水面2m.当水面下降1m时,求水面的宽度增加了多少?22.(8分)已知三个顶点的坐标分别.(1)画出;(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;(3)写出点A的对应点的坐标:___.23.(8分)如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点.(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由.24.(8分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将化为分数形式由于,设x=0.777…①则10x=7.777…②②‒①得9x=7,解得,于是得.同理可得,根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(基础训练)(1),;(2)将化为分数形式,写出推导过程;(能力提升)(3),;(注:,2.01818…)(探索发现)(4)①试比较与1的大小:1;(填“>”、“<”或“=”)②若已知,则.(注:0.285714285714…)25.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.26.(10分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据主视图是从物体正面看所得到的图形判断即可.【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【点睛】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2、B【分析】利用根与系数的关系,,由一个根为2,以及a,c的值求出另一根即可.【详解】解:∵关于x的方程有一个根是2,∴,即∴,故选:B.【点睛】此题主要考查了根与系数的关系,熟练地运用根与系数的关系可以大大降低计算量.3、B【分析】直接利用位似图形的性质进而得出答案.【详解】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△ABC,

∴△ABC∽△A′B′C′,A,O,A′三点在同一直线上,AC∥A′C′,

无法得到CO:CA′=1:2,

故选:B.【点睛】此题考查了位似变换,正确掌握位似图形的性质是解题关键.4、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.6、C【分析】根据直角三角形斜边上中线的性质可得DG=AG,根据等腰三角形的性质,得到,由三角形外角的性质,可得,再根据平行线的性质和等量关系可得,根据等腰三角形的性质得到CD=DG,最后由勾股定理解题即可.【详解】为AF的中点,即DG为斜边AF的中线,设在中,根据勾股定理得,故选:C.【点睛】本题考查勾股定理、直角三角形斜边上的中线、等腰三角形的性质、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.7、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.8、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.9、A【分析】根据特殊角的三角函数值,即可得解.【详解】.故选:A.【点睛】此题属于容易题,主要考查特殊角的三角函数值.失分的原因是没有掌握特殊角的三角函数值.10、C【解析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=1时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.二、填空题(每小题3分,共24分)11、【详解】解:设P1点的坐标为(),P2点的坐标为(b,)∵△OP1B1,△B1P2B2均为等腰三角形,

∴A1B1=OA1,A2B2=B1A2,

∴OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),

∵OP1∥B1P2,

∴∠P1OA1=∠A2B1P2,

∴Rt△P1OA1∽Rt△P2B1A2,

∴OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)∴B1B2=2(b-2a)=(6-4)b,∴故答案为:【点睛】该题较为复杂,主要考查学生对相似三角形的性质和反比例函数上的点的坐标与几何图形之间的关系.12、x1=3,x2=-1【分析】利用因式分解法解方程.【详解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案为:x1=3,x2=-1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的方法解方程是关键.13、【分析】以BC为直角边,B为直角顶点作等腰直角三角形CBE(点E在BC下方),先证明,从而,求的最大值即可,以为直径作圆,当经过中点时,有最大值.【详解】以BC为直角边,B为直角顶点作等腰直角三角形CBE(点E在BC下方),即CB=BE,连接DE,∵,∴,∴,在和中,∴(),∴,若求AC的最大值,则求出的最大值即可,∵是定值,BD⊥CD,即,∴点D在以为直径的圆上运动,如上图所示,当点D在上方,经过中点时,有最大值,∴在Rt中,,,,∴,∴,∴对角线AC的最大值为:.故答案为:.【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的性质、圆的知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.14、【分析】根据题意,可用列举法、列表法或树状统计图来计算出总次数和婷婷获胜的次数,从而求出婷婷获胜的概率【详解】解:根据题意,一共有25个等可能的结果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);两人出拳的手指数之和为偶数的结果有13个,所以婷婷获胜的概率为故答案为:【点睛】本题考查的是用列举法等来求概率,找出所有可能的结果数和满足要求的结果数是解决问题的关键.15、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、1【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值.【详解】∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,

4=,解得:k=1.故答案为1.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.17、-1.【分析】根据反比例函数系数k的几何意义得出的面积,再根据线段中点的性质可知,最后根据双曲线所在的象限即可求出k的值.【详解】如图,连接OP∵点B为AO的中点,的面积为3由反比例函数的几何意义得则,即又由反比例函数图象的性质可知则解得故答案为:.【点睛】本题考查了反比例函数的图象与性质、线段的中点,熟记反比例函数的性质是解题关键.18、【分析】根据比例的性质,由得,x=,再将其代入所求式子可得出结果.【详解】解:由得,x=,所以.故答案为:.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.三、解答题(共66分)19、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.20、(1)见解析;(2)2.1;(3)或2【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.

(2)设DM=x,则MQ=MC=6+x,MN=1+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.

(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作MH⊥DF于H,则DF=2DH,证明△MHD∽△CED,得出,求出MD=CD=1,MC=MQ=7,由勾股定理得出MN即可解决问题.

②当点M在CD边上时,同①得出BQ=2即可.【详解】(1)证明:∵四边形ABCD是矩形,

∴DC∥AB

即∠MCQ=∠CQB,

∵△BQC沿CQ所在的直线对折得到△CQN,

∴∠CQN=∠CQB,

即∠MCQ=∠MQC,

∴MC=MQ.

(2)∵四边形ABCD是矩形,△BQC沿CQ所在的直线对折得到△CQN,

∴∠CNM=∠B=90°,

设DM=x,则MQ=MC=6+x,MN=1+x,

在Rt△CNM中,MB2=BN2+MN2,

即(x+6)2=42+(x+1)2,

解得:x=,

∴DM=,

∴DM的长2.1.

(3)解:分两种情况:

①当点M在CD延长线上时,如图所示:

由(1)得∠MCQ=∠MQC,

∵DE⊥CQ,

∴∠CDE=∠F,

又∵∠CDE=∠FDM,

∴∠FDM=∠F,

∴MD=MF.

过M点作MH⊥DF于H,则DF=2DH,

又,∴,

∵DE⊥CQ

MH⊥DF,

∴∠MHD=∠DEC=90°,

∴△MHD∽△DEC

∴,

∴DM=1,MC=MQ=7,

∴MN=

∴BQ=NQ=

②当点M在CD边上时,如图所示,类似可求得BQ=2.

综上所述,BQ的长为或2.【点睛】此题考查四边形综合题,翻折变换的性质,矩形的性质,等腰三角形的判定,勾股定理,相似三角形的判定与性质,解题关键在于掌握各性质定义和需要进行分类讨论.21、水面宽度增加了(2﹣4)米【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加了(2﹣4)米.【点睛】此题考查的是二次函数的应用,建立适当的坐标系,利用待定系数法求二次函数的解析式是解决此题的关键.22、(1)见解析;(2)见解析;(3)(−3,1)【分析】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.(3)利用(2)中图象,直接得出答案.【详解】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形。所画图形如下所示:它的三个对应顶点的坐标分别是:(−3,1)、(3,3)、(1,−1).(3)利用(2)中图象,直接得出答案.故答案为:(−3,1)【点睛】此题考查坐标与图形性质,位似变换,解题关键在于掌握作图法则.23、(1)n=3,k=1,点B的坐标为(2,3);(2)x≤﹣2或x>3;(3)点D的坐标为(2+,3);(2)存在,P(3,1).【分析】(1)把点A(2,n)代入一次函数中可求得n的值,从而求出一次函数的解析式,于是可得B的坐标;再把点A的坐标代入反比例函数中,可得到k的值;

(2)观察反比例函数图象即可得到当y≥-3时,自变量x的取值范围.(3)先求出菱形的边长,然后利用平移的性质可得点D的坐标;

(2)作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小,据此可解.【详解】解:(1)把点A(2,n)代入一次函数y=x﹣3,可得n=×2﹣3=3;把点A(2,3)代入反比例函数,可得3=,解得:k=1.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=3,解得:x=2,∴点B的坐标为(2,3),(2)当y=﹣3时,,解得:x=﹣2.故当y≥﹣3时,自变量x的取值范围是x≤﹣2或x>3.(3)如图1,过点A作AE⊥x轴,垂足为E,∵A(2,3),B(2,3),∴OE=2,AE=3,OB=2,∴BE=OE﹣OB=2﹣2=2,在Rt△ABE中,AB==.∵四边形ABCD是菱形,∴AD=AB=,AD∥BC,∴点A(2,3)向右平移个单位到点D,∴点D的坐标为(2+,3).(2)存在.如图2,作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小.设直线AQ的解析式为y=kx+b,∵点B(2,3)关于y轴的对称点Q的坐标为(-2,3),∴,∴,∴直线AQ的关系式为,∴直线AQ与y轴的交点为P(3,1).∴在y轴上存在点P(3,1),使的值最小.【点睛】本题属于反比例函数综合题,考查了待定系数法求函数解析式,菱形的性质、反比例函数的性质等知识,熟练掌握相关性质及数形结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论