2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题含解析_第1页
2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题含解析_第2页
2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题含解析_第3页
2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题含解析_第4页
2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨市第35中学数学九年级第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.无实数根2.在中,,,,则的值是()A. B. C. D.3.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.4.已知关于的一元二次方程的两根为,,则一元二次方程的根为()A.0,4 B.-3,5 C.-2,4 D.-3,15.抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)6.如图,⊙O外接于△ABC,AD为⊙O的直径,∠ABC=30°,则∠CAD=()A.30° B.40° C.50° D.60°7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.下列美丽的图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.9.已知将二次函数y=x²+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x²-4x-5,则b,c的值为()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=510.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A. B. C. D.11.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里12.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为()A.70° B.75° C.60° D.65°二、填空题(每题4分,共24分)13.一元二次方程的两实数根分别为,计算的值为__________.14.分解因式:x2﹣2x=_____.15.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.16.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.17.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=2BD,则DE:BC等于_______.18.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.三、解答题(共78分)19.(8分)阅读材料材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.材料2:对于一个三位自然数,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字,,,我们对自然数规定一个运算:.例如:是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则.请解答:(1)一个三位的“对称数”,若,请直接写出的所有值,;(2)已知两个三位“对称数”,若能被11整数,求的所有值.20.(8分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)21.(8分)如图,在平面直角坐标系中,已知的三个项点的坐标分别是、、.(1)在轴左侧画,使其与关于点位似,点、、分别于、、对应,且相似比为;(2)的面积为_______.22.(10分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.(1)将绕原点逆时针旋转画出旋转后的;(2)求出点到点所走过的路径的长.23.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:(1)在图1中作出圆心O;(2)在图2中过点B作BF∥AC.24.(10分)已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.25.(12分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表达式.26.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.【详解】解:由题得:∴一元二次方程有两个相等的实数根故选:B.【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.2、D【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,

∴,∴,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.3、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,

∵AB为直径,

∴∠AEB=90°,

而AC为正方形的对角线,

∴AE=BE=CE,

∴弓形AE的面积=弓形BE的面积,

∴阴影部分的面积=△BCE的面积,

∴镖落在阴影部分的概率=.

故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得.【详解】∵关于的一元二次方程的两根为,∴或∴整理方程即得:∴将代入化简即得:解得:,故选:B.【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.5、D【解析】根据二次函数顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根据AD为⊙O的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC,通过计算即可求出结果.【详解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故选D.【点睛】本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC和∠DCA的度数.7、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.8、A【分析】根据轴对称图形和中心对称图形的定义结合图形的特点选出即可.【详解】解:A、图形既是轴对称图形又是中心对称图形,故本选项符合题意;B、图形是轴对称图形,不是中心对称图形,故本选项不合题意;C、图形是中心对称图形,不是轴对称图形,故本选项不合题意;D、图形是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题主要考查轴对称图形及中心对称图形,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.9、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【详解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴顶点坐标为(2,-9),∴由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则原二次函数y=ax2+bx+c的顶点坐标为(1,-2),∵平移不改变a的值,∴a=1,∴原二次函数y=ax2+bx+c=x2-2,∴b=1,c=-2.故选:C.【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式.10、A【分析】根据题意可知,此题是不放回实验,一共有12×11=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率.【详解】解:由题意可得,P(A)=,故选A.【点睛】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率.11、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.12、B【分析】由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.【详解】由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故选B.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.二、填空题(每题4分,共24分)13、-10【分析】首先根据一元二次方程根与系数的关系求出和,然后代入代数式即可得解.【详解】由已知,得∴∴故答案为-10.【点睛】此题主要考查根据一元二次方程根与系数的关系求代数式的值,熟练掌握,即可解题.14、x(x﹣2)【分析】提取公因式x,整理即可.【详解】解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).【点睛】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.15、65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理16、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,

∴圆锥的底面半径=4π÷1π=1cm,

故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.17、2:1【分析】根据DE∥BC得出△ADE∽△ABC,结合AD=2BD可得出相似比即可求出DE:BC.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=2BD,∴,∴DE:BC=2:1,故答案为:2:1.【点睛】本题考查了相似三角形的判定及性质,属于基础题型,解题的关键是熟悉相似三角形的判定及性质,灵活运用线段的比例关系.18、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.三、解答题(共78分)19、(1)515或565;(2)的值为4,8,96,108,144.【分析】(1)根据“对称数”的定义和可知,这个三位数首尾数字只能是5,然后中间的数字2倍后个位数为2,由此可得B的值.(2)首先表示出这两个三位数,,,根据能被11整数,分情况讨论、的值即可得出答案.【详解】解:(1)∵由运算法则可知,这个三位数首尾数字只能是5,中间数字2倍后各位数字为2,∴中间数字为1或6,则这个三位数为515或565故答案为:515或565;(2)由题意得:,,能被11整除,是11的倍数.、在1~9中取值,.当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;的值为4,8,96,108,144.【点睛】本题考查新型定义运算问题,理解的运算法则是解决本题的关键.20、(1)相切,证明见解析;(2)答案见解析【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.21、(1)见解析;(2)1.【分析】(1)根据位似的性质得到点、、的对应点D(-1,-1),E(-2,0),F(-2,2),连线即可得到位似图形;(2)利用底乘高的面积公式计算即可.【详解】(1)如图,(2)由图可知:E(-2,0),F(-2,2);∴EF=2,∴S△DEF,故答案为:1.【点睛】此题考查位似的性质,位似图形的画法,坐标系中三角形面积的求法,熟练掌握位似图形的关系是解题的关键.22、(1)见解析;(2)【分析】(1)根据旋转角、旋转方向、旋转中心找到各顶点的对应点顺次连结即可;(2)根据勾股定理先求出OB的长度,然后根据弧长公式列式运算即可.【详解】解:(1)所作图形如下图所示:即为所求;(2)∵,∴OB=,∴点到点所走过的路径的长为:.【点睛】本题考查了旋转作图,掌握画图的方法和图形的特点是解题的关键;注意旋转时点经过的路径为一段弧长.23、见解析.【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、1.【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=×AB×OC=×4×6=1.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论