




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省天门市九年级数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A. B. C. D.2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是()A.二次函数的最大值为a+b+c B.4a-2b+c﹤0C.当y>0时,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.3.已知关于的一元二次方程的两个根分别是,,且满足,则的值是()A.0 B. C.0或 D.或04.如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.5.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(
)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③6.已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>17.从这九个自然数中任取一个,是的倍数的概率是().A. B. C. D.8.把二次函数,用配方法化为的形式为()A. B.C. D.9.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.1010.如图所示,在矩形ABCD中,点F是BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.10二、填空题(每小题3分,共24分)11.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.13.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是,则白色棋子的个数为_____.14.如图,是的切线,为切点,连接.若,则=__________.15.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.16.=___17.使式子有意义的x的取值范围是____.18.一元二次方程x2=2x的解为________.三、解答题(共66分)19.(10分)如图,斜坡的坡度是1:2.2(坡面的铅直高度与水平宽度的比称为坡度),这个斜坡的水平宽度是22米,在坡顶处的同一水平面上()有一座古塔.在坡底处看塔顶的仰角是45°,在坡顶处看塔顶的仰角是60°,求塔高的长.(结果保留根号)20.(6分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.21.(6分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.22.(8分)如图,在中,,为边上的中线,于点E.(1)求证:;(2)若,,求线段的长.23.(8分)如图,、交于点,,且平分.(1)求证:;(2)若,,,求的长.24.(8分)如图,下列网格由小正方形组成,点都在正方形网格的格点上.(1)在图1中画出一个以线段为边,且与面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段为边,且与相似(但不全等)的格点三角形,并写出所画三角形与的相似比.(相同的相似比算一种)(1)(2)25.(10分)如图,是的直径,过的中点.,垂足为.(1)求证:直线是的切线;(2)若,的直径为,求的长及的值.26.(10分)解方程:x(x-2)+x-2=1.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据从上面看到的图形即为俯视图进一步分析判断即可.【详解】从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.【点睛】本题主要考查了三视图的判断,熟练掌握相关方法是解题关键.2、D【分析】A.根据对称轴为时,求得顶点对应的y的值即可判断;B.根据当时,函数值小于0即可判断;C.根据抛物线与轴的交点坐标即可判断.D.根据抛物线与直线的交点情况即可判断.【详解】A.∵当时,,根据图象可知,,正确.不符合题意;B.∵当时,,根据图象可知,,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,,正确.不符合题意;D.根据图象可知:抛物线与直线有两个交点,∴关于的方程有两个不相等的实数根,本选项错误,符合题意.故选:D.【点睛】本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.3、C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2-2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【详解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的两个实数根,
∴x1+x2=-(2m+1),x1x2=m-1,
∵x12+x22=(x1+x2)2-2x1x2=3,
∴[-(2m+1)]2-2(m-1)=3,
解得:m1=0,m2=,
又∵方程x2-mx+2m-1=0有两个实数根,
∴△=(2m+1)2-4(m-1)≥0,
∴当m=0时,△=5>0,当m=时,△=6>0
∴m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.4、D【分析】分两种情况:①当P点在OA上时,即2≤x≤2时;②当P点在AB上时,即2<x≤1时,求出这两种情况下的PC长,则y=PC•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①当P点在OA上时,即2≤x≤2时,PC=OC=x,S△POC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;OC=x,则BC=1-x,PC=BC=1-x,S△POC=y=PC•OC=x(1-x)=-x2+2x,是开口向下的抛物线,当x=1时,y=2.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.5、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.6、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则,解得:a<﹣.故选:B.【点睛】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.7、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是偶数的概率是:.故选B.8、B【分析】先提取二次项系数,再根据完全平方公式整理即可.【详解】解:;故选:B.【点睛】本题考查了二次函数的性质,二次函数的最值,二次函数的三种形式的转化,难点在于(3)判断出二次函数取最大值时的自变量x的值.9、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.10、C【解析】由矩形的性质得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA证明△BEF≌△CDF,得出BE=CD=AB,则AE=2AB=2CD,再根据AOECOD,面积比等于相似比的平方即可。【详解】∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F为BC的中点,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故选:C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握有关的性质与判定是解决问题的关键.二、填空题(每小题3分,共24分)11、﹣1或1【解析】试题分析:根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.∵关于x的一元二次方程x1+1ax+a+1=0有两个相等的实数根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考点:根的判别式.12、-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.13、1.【分析】设白色棋子的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:设白色棋子的个数为x个,根据题意得:=,解得:x=1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.14、65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.【详解】解:∵是的切线,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案为:65°.【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.15、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.16、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17、【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:由题意得:x-1≥0,x-1≠0,
解得:x≥1,x≠1.
故答案为x≥1且x≠1.【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数、分母不为零.18、x1=0,x1=1【解析】试题分析:移项得x1-1x=0,即x(x-1)=0,解得x=0或x=1.考点:解一元二次方程三、解答题(共66分)19、米【分析】分别过点和作的垂线,垂足为和,设AD=x,根据坡度求出DQ,根据正切定义用x表示出PQ,再由等腰直角三角形的性质列出x的方程,解之即可解答.【详解】解:分别过点和作的垂线,垂足为和,设的长是米∵中,∴∵的坡比是1:1.1,水平长度11米∴∴在中,∴,即:∴答:的长是米【点睛】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角的概念、熟记锐角三角函数的定义是解答本题的关键.20、(1)见解析;(2)相切,理由见解析【分析】(1)连接OC,由D为的中点,得到,根据圆周角定理即可得到结论;
(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,从而得到结论.【详解】(1)证明:连接OC,∵D为的中点,∴,∴∠BOD=∠BOC,由圆周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点睛】本题考查了直线与圆的位置关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.21、(1);(2).【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=;(2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==.【点睛】本题考查列表法与树状图法.22、(1)见解析;(2).【分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:∵,∴.又∵为边上的中线,∴.∵,∴,∴.(2)∵,∴.在中,根据勾股定理,得.由(1)得,∴,即,∴.【点睛】此题考查相似三角形的判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外企圣诞活动方案
- 城乡联谊活动方案
- 夏季永辉鞋业活动方案
- 天津公司文化活动方案
- 大学生物流竞赛活动方案
- 地板销售活动方案
- 大型活动放松活动方案
- 大班汽车活动方案
- 夏至幼儿园节日活动方案
- 外出拍照活动方案
- 信息必刷卷04(广东省卷专用)2025年中考数学(解析版)
- 餐饮服务与管理课件 菜单的设计与制作
- 2025年度次季度工业级5G专网部署技术服务合同模板
- 大数据分析在食品检测精度提高中的应用策略
- 山东师范大学《大学英语本科(专升本)》期末考试复习题及参考答案
- Unit 6 A great week (教学设计)-2024-2025学年外研版(三起)(2024)英语三年级下册
- 2025版小细胞肺癌免疫治疗专家共识解读
- 职业技能培训:保健按摩师
- JJF(津) 5003-2024 汽车制造专用加注机校准规范
- 2025年绍兴市部分市属国有企业招聘笔试参考题库含答案解析
- 团队建设与团队管理培训
评论
0/150
提交评论