版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市43中学数学九年级第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将抛物线向左平移2个单位后所得到的抛物线为()A. B.C. D.2.抛物线的对称轴是()A. B. C. D.3.下列各点中,在反比例函数图像上的是()A. B. C. D.4.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离 B.相切 C.相交 D.相切或相交5.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为6.一元二次方程中至少有一个根是零的条件是()A.且 B. C.且 D.7.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.9.下列命题是真命题的个数是().①64的平方根是;②,则;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A.1个 B.2个 C.3个 D.4个10.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=11.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<512.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.14.已知关于的一元二次方程的一个根是2,则的值是:______.15.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.16.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为___.17.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为____米.18.一家鞋店对上一周某品牌女鞋的销量统计如下:尺码(厘米)2222.52323.52424.525销量(双)12511731该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是___________.三、解答题(共78分)19.(8分)已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求的值.20.(8分)如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.21.(8分)如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.(1)求证:是的切线;(2)求证:是等腰三角形;(3)若,,求的值及的长.22.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.23.(10分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.24.(10分)如图,在中,是上的高,.(1)求证:;(2)若,求的长.25.(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.26.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据抛物线的平移规律“上加下减,左加右减”求解即可.【详解】解:将抛物线向左平移2个单位后所得到的抛物线为:.故选D.【点睛】本题考查了抛物线的平移,属于基础知识,熟知抛物线的平移规律是解题的关键.2、D【解析】根据二次函数的对称轴公式计算即可,其中a为二次项系数,b为一次项系数.【详解】由二次函数的对称轴公式得:故选:D.【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题关键.3、C【分析】把每个点的坐标代入函数解析式,从而可得答案.【详解】解:当时,故A错误;当时,故B错误;当时,故C正确;当时,故D错误;故选C.【点睛】本题考查的是反比例函数图像上点的坐标特点,掌握以上知识是解题的关键.4、B【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【详解】解:作CD⊥AB于点D.
∵∠B=30°,BC=4cm,∴即CD等于圆的半径.
∵CD⊥AB,
∴AB与⊙C相切.
故选:B.5、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【点睛】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.6、D【分析】代入,求得一元二次方程需满足的条件.【详解】由题意得,一元二次方程存在一个根代入到中解得故答案为:D.【点睛】本题考查了一元二次方程的解法,掌握解一元二次方程的方法是解题的关键.7、C【分析】根据二次函数的性质求出抛物线的顶点坐标,根据偶次方的非负性判断.【详解】抛物线y=3(x+2)2﹣(m2+1)的的顶点坐标为(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴抛物线的顶点在第三象限,故选:C.【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标的确定方法、偶次方的非负性是解题的关键.8、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.9、C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是,正确,是真命题;②,则不一定,可能;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.10、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.12、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【详解】解:∵二次函数y=1x1﹣4x+4=1(x﹣1)1+1,∴点P的坐标为(1,1),设点M的坐标为(a,1),则点N的坐标为(a,1a1﹣4a+4),∴===1,故答案为:1.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P左边,设出点M、点N的坐标,表达出.14、1【分析】先将所求式子化成,再根据一元二次方程的根的定义得出一个a、b的等式,然后将其代入求解即可得.【详解】由题意,将代入方程得:整理得:,即将代入得:故答案为:1.【点睛】本题考查了一元二次方程的根的定义、代数式的化简求值,利用一元二次方程的根的定义得出是解题关键.15、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.16、【详解】解:连接BE∵⊙的半径,AB=2∴且,若设⊙的半径为,则.在△ACO中,根据勾股定理有,即,解得:.∴.∵是⊙的直径,∴.故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.17、2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解.【详解】解:根据题意可知当小颖在BG处时,∴,即∴AP=6当小颖在DH处时,∴,即∴∴DE=2故答案为:2【点睛】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似三角形对应边相等.18、众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.熟练掌握均数、中位数、众数、方差的意义是解答本题的关键.三、解答题(共78分)19、(1)y=;(2)B(m+n,n﹣m);(3)【分析】(1)根据等腰直角三角形性质,直角三角形斜边中线定理,三线合一,得到点坐标,代入解析式即可得到.(2)过点作平行于轴的直线,过点作垂直于轴的直线交于点,交轴于点,构造一线三等角全等,得到,,所以(3)把点和点的坐标代入反比例函数解析式得到关于、的等式,两边除以,换元法解得的值是【详解】解:(1)过作,交轴于点,,,为等腰直角三角形,,,将,代入反比例解析式得:,即,则反比例解析式为;(2)过作轴,过作,,,,,在和中,,,,,,,则;(3)由与都在反比例图象上,得到,整理得:,即,这里,,,△,,在第一象限,,,则.【点睛】此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及一元二次方程的解法,熟练掌握反比例函数的性质是解本题的关键.20、(1)见解析;(2)1【分析】(1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.【详解】解:(1)证明:连接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,则BD为圆O的切线;(2)解:设BD=x,则OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴线段BD的长是1.21、(1)见解析;(2)见解析;(3),【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB∽△ADC,由相似三角形的对应边成比例,求CB的值,然后求求的值;连结BE,在Rt△FEB和Rt△AEB中,利用勾股定理来求EF即可.【详解】解:(1)如图1,连结,是的直径,,又点是的中点,.,又是的切线图1(2)四边形内接于,.,即是等腰三角形(3)如图2,连结,设,,在中,,由(1)可知,又,在中,,,是的直径,,即解得图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.22、(1)40;(2)见解析,18°;(3)获得三等奖的有210人.【分析】(1)根据B的人数和所占的百分比可以求得本次抽样调查学生人数;(2)根据统计图中的数据和(1)中的结果可以将统计图中所缺的数据补充完整并计算出扇形统计图中A所对应扇形圆心角的度数;(3)根据统计图中的数据可以计算出获得三等奖的人数.【详解】解:(1)本次抽样调查学生的人数为:8÷20%=40,故答案为:40;(2)A所占的百分比为:×100%=5%,D所占的百分比为:×100%=50%,C所占的百分比为:1﹣5%﹣20%﹣50%=25%,获得三等奖的人数为:40×25%=10,补全的统计图如图所示,扇形统计图中A所对应扇形圆心角的度数是360°×5%=18°;(3)840×25%=210(人),答:获得三等奖的有210人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23、若围成的面积为,自行车车棚的长和宽分别为10米,18米.【分析】设自行车车棚的宽AB为x米,则长为(38-2x)米,根据矩形的面积公式,即可列方程求解即可.【详解】解:现有总长的铁栏围成,需留出2米长门∴设,则;根据题意列方程,解得,;当,(米),当,(米),而墙长,不合题意舍去,答:若围成的面积为,自行车车棚的长和宽分别为10米,18米.【点睛】本题考查的是一元二次方程的应用,结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.24、(1)见解析;(2).【分析】(1)由于tanB=cos∠DAC,根据正切和余弦的概念可证明AC=BD;
(2)根据,AD=24,可求出AC的长,再利用勾股定理可求出CD的长,再根据BC=CD+BD=CD+AC可得出结果.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年温州大客车从业资格证考试试题
- 2024年迪庆客运资格证考试题库下载
- 人教部编版二年级语文上册第22课《狐假虎威》精美课件
- 吉首大学《建筑设计Ⅴ》2021-2022学年第一学期期末试卷
- 吉首大学《场景设计》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷17
- 吉林艺术学院《艺术批评写作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《全媒体文案创意写作》2021-2022学年第一学期期末试卷
- 签订宴会厅协议书范本范本
- 吉林艺术学院《CG模型设计》2021-2022学年第一学期期末试卷
- IEEE1588学习笔记
- 危险化学品企业安全风险智能化管控平台建设指南(试行)
- 亚龙YL-335B实训项目书
- 钢管落地卸料平台
- 日语授受关系PPT演示课件
- 殡仪服务试题——
- 浅析全面深化改革的背景和特点
- 骨龄及其测评方法
- (完整版)初三化学计算题专题练习题
- 2010年度重庆市高等学校精品课程申报表 高电压技术
- 中日英刀具照表
评论
0/150
提交评论