2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题含解析_第1页
2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题含解析_第2页
2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题含解析_第3页
2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题含解析_第4页
2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省泉州市泉港一中学、城东中学九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(

)A.2.4m B.24m C.0.6m D.6m2.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二3.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.124.下列方程是一元二次方程的是()A.2x﹣3y+1 B.3x+y=z C.x2﹣5x=1 D.x2﹣+2=05.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.6.若3a=5b,则a:b=()A.6:5 B.5:3 C.5:8 D.8:57.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.8.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.9.将抛物线向右平移2个单位,则所得抛物线的表达式为()A. B.C. D.10.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,反比例函数的图象与矩形相较于两点,若是的中点,,则反比例函数的表达式为__________.12.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.13.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.14.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线和直线外一点.求作:直线的垂线,使它经过.作法:如图2.(1)在直线上取一点,连接;(2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,连接交于点;(3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.请你写出上述作垂线的依据:______.15.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出______个小分支.16.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.17.如图,D、E分别是△ABC的边AB,AC上的点,=,AE=2,EC=6,AB=12,则AD的长为_____.18.抛物线在对称轴左侧的部分是上升的,那么的取值范围是____________.三、解答题(共66分)19.(10分)在中,,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接、.(1)在图中,补全图形,并证明.(2)连接,若与⊙相切,则的度数为.(3)连接,则的最小值为;的最大值为.20.(6分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.21.(6分)如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)22.(8分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.23.(8分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.24.(8分)已知二次函数y=x2-4x+1.(1)用配方法将y=x2-4x+1化成y=a(x-h)2+k的形式;(2)在平面直角坐标系xOy中,画出该函数的图象.(1)结合函数图象,直接写出y<0时自变量x的取值范围.25.(10分)如图,己知抛物线的图象与轴的一个交点为另一个交点为,且与轴交于点(1)求直线与抛物线的解析式;(2)若点是抛物线在轴下方图象上的-一动点,过点作轴交直线于点,当的值最大时,求的周长.26.(10分)某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075_______若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.(1)请计算小张的学期总评成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析:作AN⊥EF于N,交BC于M,

∵BC∥EF,

∴AM⊥BC于M,

∴△ABC∽△AEF,

∴,

∵AM=0.6,AN=30,BC=0.12,

∴EF==6m.

故选D.2、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.4、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.逐一判断即可.【详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C.【点睛】此题主要考查了一元二次方程定义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.5、C【详解】画树状图得:

∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,

∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.6、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【详解】解:∵3a=5b,∴=,故选:B.【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.7、A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.8、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【点睛】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.9、D【分析】根据“左加右减,上加下减”的规律直接求得.【详解】因为抛物线y=3x2−1向右平移2个单位,得:y=3(x−2)2−1,故所得抛物线的表达式为y=3(x−2)2−1.故选:D.【点睛】本题考查平移的规律,解题的关键是掌握抛物线平移的规律.10、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.二、填空题(每小题3分,共24分)11、【分析】设D(a,),则B纵坐标也为,代入反比例函数的y=,即可求得E的横坐标,则根据三角形的面积公式即可求得k的值.【详解】解:设D(a,),则B纵坐标也为,∵D是AB中点,∴点E横坐标为2a,代入解析式得到纵坐标:,∵BE=BCEC=,∴E为BC的中点,S△BDE=,∴k=1.∴反比例函数的表达式为;故答案是:.【点睛】本题考查了反比例函数的性质,以及三角形的面积公式,正确表示出BE的长度是关键.12、241【分析】本题首先通过待定系数法求解y与x的关系式,继而根据利润公式求解二次函数表达式,最后根据二次函数性质求解本题.【详解】由题意假设,将,代入一次函数可得:,求解上述方程组得:,则,∵,∴,∴,又因为商品进价为16元,故.销售利润,整理上式可得:销售利润,由二次函数性质可得:当时,取最大值为1.故当销售单价为24时,每月最大毛利润为1元.【点睛】本题考查二次函数的利润问题,解题关键在于理清题意,按照题目要求,求解二次函数表达式,最后根据二次函数性质求解此类型题目.13、或【解析】根据位似变换的性质计算即可.【详解】解:∵△ABC与△A'B'C'相似比为,若点C的坐标为(4,1),∴点C′的坐标为或∴点C′的坐标为或故答案为或【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.14、直径所对的圆周角是直角【分析】由题意知点E在以PA为直径的圆上,根据“直径所对的圆周角是直角”可得∠PEA=90°,即PE⊥直线a.【详解】由作图知,点E在以PA为直径的圆上,所以∠PEA=90°,则PE⊥直线a,所以该尺规作图的依据是:直径所对的圆周角是直角,故答案为:直径所对的圆周角是直角.【点睛】本题主要考查作图−尺规作图,解题的关键是掌握线段中垂线的尺规作图及其性质和直径所对的圆周角是直角.15、6【分析】设这种植物每个支干长出个小分支,根据主干、支干和小分支的总数是43,即可得出关于的一元二次方程,解之取其正值即可得出结论.【详解】解:设这种植物每个支干长出个小分支,依题意,得:,解得:(不合题意,舍去),.故选:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16、1

【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.【点睛】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、1【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=1,故答案为:1.【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.18、【分析】利用二次函数的性质得到抛物线开口向下,则a-1<0,然后解不等式即可.【详解】∵抛物线y=(a-1)x1在对称轴左侧的部分是上升的,

∴抛物线开口向下,

∴a-1<0,解得a<1.

故答案为a<1.【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.三、解答题(共66分)19、(1)证明见解析;(2)或;(3)【分析】(1)根据题意,作出图像,然后利用SAS证明,即可得到结论;(2)根据题意,由与⊙相切,得到∠BMN=90°,结合点M的位置,即可求出的度数;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;当点N落在BA延长线上时,BN的值最大,分别求出BN的值,即可得到答案.【详解】解:(1)如图,补全图形,证明:,∵,,;(2)根据题意,连接MN,∵与⊙相切,∴∠BMN=90°,∵△MNC是等腰直角三角形,∴∠CMN=45°,如上图所示,∠BMC=;如上图所示,∠BMC=;综合上述,的度数为:或;故答案为:或;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;如图所示,∵AN=BM=1,∵,∴;当点N落在BA延长线上时,BN的值最大,如图所示,由AN=BN=1,∴BN=BA+AN=2+1=3;∴的最小值为1;的最大值为3;故答案为:1,3.【点睛】本题考查了圆的性质,全等三角形的旋转模型,等腰直角三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握圆的动点问题,注意利用数形结合和分类讨论的思想进行解题.20、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.21、图形见详解.【解析】根据题目要求作出三视图即可.【详解】解:(1)主视图和俯视图如下图,(2)左视图如下图【点睛】本题考查了三视图的实际作图,属于简单题,熟悉三视图的作图方法是解题关键.22、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),点A、D在同一反比例函数图象上,可得2a=(2+a),求出a的值即可;(2)分两种情形:①如图2中,当∠PA1D=90°时.②如图2中,当∠PDA1=90°时.分别构建方程解决问题即可;详解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),∵点A、D在同一反比例函数图象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如图2中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论