2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年重庆市万州二中学九年级数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A. B. C. D.2.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件3.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)4.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º5.下列二次根式中,是最简二次根式的是()A. B. C. D.6.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.7.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.8.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为09.已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点()A.D点 B.E点 C.F点 D.D点或F点10.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定11.如图,AB是⊙O的直径,弦CD⊥AB,∠CAB=25°,则∠BOD等于()A.70° B.65° C.50° D.45°12.已知点在抛物线上,则下列结论正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.四边形ABCD与四边形位似,点O为位似中心.若,则________.14.若(m+1)xm(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是_____.15.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.16.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.17.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.18.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)求一次函数和反比例函数的表达式;(2)直接写出的面积.20.(8分)已知反比例函数的图象与一次函数的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(-1,5)关于x轴的对称点P'是否在一次函数图象上.21.(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂长可绕点旋转,摆动臂可绕点旋转,,.(1)在旋转过程中:①当三点在同一直线上时,求的长;②当三点在同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.22.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.(10分)已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<1.结合图像,直接写出a的取值范围.24.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.25.(12分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.26.解方程(1)(2)

参考答案一、选择题(每题4分,共48分)1、B【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解2、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.3、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.4、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.5、B【分析】根据最简二次根式概念即可解题.【详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.6、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【点睛】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.7、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.8、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.9、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点.【详解】解:∵线段AB=60,AD=13,DE=17,EF=7,∴BD=60-13=47,AE=BE=30,AF=37,∴BD:AB=47:60≈0.783,AF:AB=37:60=0.617,∴点F最接近线段AB的黄金分割点.故选:C.【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.10、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【点睛】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.11、C【分析】先根据垂径定理可得,然后根据圆周角定理计算∠BOD的度数.【详解】解:∵弦CD⊥AB,∴,∴∠BOD=2∠CAB=2×25°=50°.故选:C.【点睛】本题考查了垂径定理、圆心角定理和圆周角定理,熟悉掌握定义,灵活应用是解本题的关键12、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况二、填空题(每题4分,共24分)13、1∶3【解析】根据四边形ABCD与四边形位似,,可知位似比为1:3,即可得相似比为1:3,即可得答案.【详解】∵四边形与四边形位似,点为位似中心.,∴四边形与四边形的位似比是1∶3,∴四边形与四边形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案为1∶3.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.14、﹣2或2【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(2)未知数的最高次数是2;(2)二次项系数不为2.由这两个条件得到相应的关系式,再求解即可.【详解】由题意得:解得m=−2或2.故答案为:﹣2或2.【点睛】考查一元二次方程的定义的运用,一元二次方程注意应着重考虑未知数的最高次项的次数为2,系数不为2.15、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【点睛】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.16、1.【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=或x=4,当x=时,+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=1.故答案为:1.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.17、(6,4).【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=设⊙P的半径为r,根据三角形的面积可得:r=过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.18、(﹣1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B1旋转8次一个循环,∵2018÷8=252余数为2,∴点B2019的坐标与B3(﹣1,1)相同,∴点B2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(共78分)19、(1)y=﹣x+5,y=;(2)【分析】(1)由点B在反比例函数图象上,可求出点B的坐标,将点A的坐标代入反比例函数即可求出反比例函数解析式;将点A和点B的坐标代入一次函数y=k1x+b即可求出一次函数解析式;(2)延长AB交x轴与点C,由一次函数解析式可找出点C的坐标,通过分割图形利用三角形的面积公式即可得出结论;【详解】⑴解:将A(1,4)代入y=,得k2=4,∴该反比例函数的解析式为y=,当x=4时代入该反比例函数解析式可得y=1,即点B的坐标为(4,1),将A(1,4)B(4,1)代入y=k1x+b中,得,解得k1=﹣1,b=5,∴该一次函数的解析式为y=﹣x+5;(2)设直线y=﹣x+5与x轴交于点C,如图,当y=0时,−x+5=0,解得:x=5,则C(5,0),∴S△AOB=S△AOC−S△BOC=×5×4−×5×1=.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形的面积公式以及解二元一次方程组,掌握知识点是解题的关键.20、(1),;(1)P'在一次函数图象上.【分析】(1)把点的坐标代入反比例函数和一次函数的一般式即可求出函数解析式.

(1)首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,求出点P(-1,5)关于x轴的对称点P′的坐标,再代入一次函数解析式,看看是否满足解析式,满足则在一次函数y=kx+m的图象上,反之则不在.【详解】解:(1)∵经过点(1,1),∴k=1.∵一次函数的图象经过(1,1),∴1=1×1+m∴m=-3,∴反比例函数解析式为,一次函数解析式为.(1)∵P(-1,5)关于x轴的对称点P'坐标为(-1,-5),∴把x=-1代入,得:y=-5,∴P'在一次函数图象上.【点睛】此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,关键是把握住凡是图象经过的点都能满足解析式.21、(1)①,或;②或;(2).【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【详解】(1)①,或.②显然不能为直角,当为直角时,,∴.当为直角时,,∴.(2)连结,由题意得,,∴,,又∵,∴,∴.∵,∴,即.又∵,,∴,∴.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=,

得k=3,

∴反比例函数的表达式y=,

(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,

∴D(3,﹣1),设直线AD的解析式为y=mx+n,

把A,D两点代入得,,

解得m=﹣2,n=1,

∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,

∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23、(1)a+2;2;(2)-2或;(3)【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<1,则顶点纵坐标大于等于1,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得:a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则解得:当y=2时,由(1)可知,b=a+2;c=2∴解得:a=-2当y=-2时,由(1)可知,b=a+2;c=2∴解得:∴a的值为-2或(3)若x>1时,y<1,又因为图像过点A(-1,0)、B(0,2)∴图像开口向下,即a<0则该图像顶点纵坐标大于等于1∴即解得:或(舍去)∴a的取值范围为【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.24、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论