版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年上海市闵行区数学九年级第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.2.某学习小组在研究函数y=x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”x3﹣2x=2实数根的个数为()A.1 B.2 C.3 D.43.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)4.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.5.如图,在中,若,则的长是()A. B. C. D.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25π B.65π C.90π D.130π7.如图,弦和相交于内一点,则下列结论成立的是()A.B.C.D.8.如图,是抛物线的图象,根据图象信息分析下列结论:①;②;③;④.其中正确的结论是()A.①②③ B.①②④ C.②③④ D.①②③④9.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.10.如图,关于抛物线,下列说法错误的是()A.顶点坐标为(1,)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小11.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣212.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,二、填空题(每题4分,共24分)13.抛物线y=(x-2)2+3的顶点坐标是______.14.如图,已知,,,若,,则四边形的面积为______.15.如果x:y=1:2,那么=_____.16.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是____.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.18.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.三、解答题(共78分)19.(8分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.(1)已知抛物线.①在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是;②如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.20.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.21.(8分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.22.(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.23.(10分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示售价x(元/本)…222324252627…销售量y(件)…363432302826…(1)请直接写出y与x的函数关系式:.(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?24.(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.25.(12分)计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos245°+sin60°tan45°+sin1.26.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,
∴该抛物线的顶点坐标是(1,3),
∴在旋转之后的抛物线解析式为:.
故选:B.【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.2、C【分析】利用直线y=2与yx1﹣2x的交点个数可判断x1﹣2x=2实数根的个数.【详解】由图象可得直线y=2与yx1﹣2x有三个交点,所以x1﹣2x=2实数根的个数为1.故选C.【点睛】本题考查了函数图像的交点问题:把要求方程根的问题转化为函数图像的交点问题是解题关键.3、D【解析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.4、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.5、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.6、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.7、C【分析】连接AC、BD,根据圆周角定理得出角相等,推出两三角形相似,根据相似三角形的性质推出即可.【详解】连接AC、BD,∵由圆周角定理得:∠A=∠D,∠C=∠B,∴△CAP∽△BDP,∴∴,所以只有选项C正确.故选C.【点睛】本题考查了相似三角形的判定与性质、圆周角定理,连接AC、BD利用圆周角定理是解题的关键.8、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断.【详解】①根据抛物线对称轴可得,,正确;②当,,根据二次函数开口向下和得,和,所以,正确;③二次函数与x轴有两个交点,故,正确;④由题意得,当和时,y的值相等,当,,所以当,,正确;故答案为:D.【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.9、A【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.10、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.11、A【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.12、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.二、填空题(每题4分,共24分)13、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故答案为(2,3)【点睛】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.14、1【分析】过点D作DE⊥AC于E,利用AAS证出ABC≌DAE,从而得出BC=AE,AC=DE,∠BAC=∠ADE,根据锐角三角函数可得,设BC=AE=x,则AC=DE=4x,从而求出CE,利用勾股定理列出方程即可求出x的值,从而求出BC、AC和DE,再根据四边形的面积=即可求出结论.【详解】解:过点D作DE⊥AC于E∴∠EAD+∠ADE=90°∵∴∠BAC+∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,∴ABC≌DAE∴BC=AE,AC=DE,∠BAC=∠ADE∴∴设BC=AE=x,则AC=DE=4x∴EC=AC-AE=3x在RtCDE中,CE2+DE2=CD2即(3x)2+(4x)2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形的面积==BC·AC+AC·DE=×1×4+×4×4=1故答案为:1.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.15、【分析】根据合比性质,可得答案.【详解】解:,即.故答案为.【点睛】考查了比例的性质,利用了和比性质:.16、k≤5【详解】解:由题意得,42-4×1×(k-1)≥0,解之得k≤5.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根.17、1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18、y=(x+2)2-1【分析】根据函数图象的平移规律解答即可得到答案【详解】由题意得:平移后的函数解析式是,故答案为:.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.三、解答题(共78分)19、(1)①A,C.②;(2)或.【分析】(1)①分别将A,B,C三个点的横坐标代入抛物线的解析式中,然后比较求出的函数值与各自点的纵坐标,最后依据上位点的定义判断即可得出答案;②找到直线与抛物线的两个交点,即可确定点的横坐标的取值范围(2)当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求,数形结合求出临界点时圆心的横坐标,即可得出答案.【详解】解:(1)①当时,,所以A点是抛物线的上位点;当时,,所以B点不是抛物线的上位点;当时,,所以C点是抛物线的上位点;故答案为,.②∵点是直线的图上点,∴点在上.又∵点是的上位点,∴点在与的交点,之间运动.∵∴∴点(,),(,).∴.(2)如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.将沿直线翻折后的直线的解析式为当时,,∴A(-3,0),OA=3当时,∴C(0,3),OC=3∴∵∴∴∵A(-3,0)∴同理可得∴线段EF上同时存在图象的上位点,图上点和下位点,圆心的横坐标的取值范围为或.【点睛】本题主要考查二次函数与一次函数的综合,掌握上位点,图上点和下位点的概念是解题的关键.20、(1)见解析;(2)见解析,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,)【解析】(1)作出A、B、C关于x轴的对称点,然后顺次连接即可得到;(2)把A、B、C绕原点按逆时针旋转90度得到对应点,然后顺次连接即可得到,根据图可写出C2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,).【点睛】本题综合考查了轴对称图形和图形的旋转的作图,图形变换的性质,不管是哪一种变化,找对应点是关键.21、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.22、(1);(2),-4,,-1,3,2,3,【分析】(1)设出反比例函数解析式,把代入解析式即可得出答案;(2)让的乘积等于3计算可得表格中未知字母的值.【详解】解:(1)设,,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案为:,-4,,-1,3,2,3,.【点睛】本题考查了反比例函数的解析式,熟练掌握解析式的求法是解题的关键.23、(1)y=﹣2x+2;(2)W=﹣2x2+120x﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元【分析】(1)由表中数据可知,y是x的一次函数,设y=kx+b,代入表中的两组数据,即可得出函数解析式,再将其余数据验证一下更好;
(2)根据(售价-进价)×销售量=利润,列出函数关系式,再由二次函数的性质可得何时取最大值即可.【详解】(1)由表中数据可知,y是x的一次函数,设y=kx+b,由题意得:解得∴y=﹣2x+2检验:当x=24时,y=﹣2×24+2=32;当x=25时,y=﹣2×25+2=30;当x=1时,y=﹣2×1+2=28;当x=27时,y=﹣2×27+2=1.故y=﹣2x+2符合要求.故答案为:y=﹣2x+2.(2)W与x之间的函数关系式为:W=(x﹣20)(﹣2x+2)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0∴当x=30时,W的值最大,最大值为200元.∴W与x之间的函数关系式为W=﹣2x2+120x﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元.【点睛】本题考查了猜测函数关系式,并用待定系数法求解,以及二次函数在成本利润问题中的应用,明确成本利润之间的基本数量关系及二次函数的性质,是解题的关键.24、(1)见解析;(2)4.5;(3)27【分析】(1)根据等腰三角形的性质可得,结合切线的判定方法可得结论;(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;(3)根据两组对应角分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多层陶瓷片式电感市场现状及未来发展趋势(2024版)
- 融文:2024撰写现代化PR报告的专业指南
- 荣泰煤矿6-2中煤大巷煤柱回收开采方案
- 水源地合理开采及恢复机制研究
- 广州-PEP-2024年11版小学4年级上册英语第6单元测验试卷
- Python程序设计实践-教学大纲、授课计划
- 2024年电能仪表项目资金需求报告代可行性研究报告
- 预制菜分类原则(征求意见稿)编制说明
- 珠宝销售个人工作计划
- 新娘结婚致辞
- 2024中国石化校园招聘3500人高频500题难、易错点模拟试题附带答案详解
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 江苏省宿迁市2024年中考物理试卷【附参考答案】
- 绿化养护考核办法及实施细则
- LNG加气站加气车辆发生火灾事故应急演练方案 2024
- 2024新人教七年级上册英语单词表衡水体字帖
- 2024年人教版七年级上册英语期中综合检测试卷及答案 (一)
- 组织管理体系-
- 山西省太原市2022-2023学年八年级上学期期中历史试题(解析版)
- 小型电站下游河道减脱水防治技术导则
- 锅炉和压力容器 第1部分:性能要求 征求意见稿
评论
0/150
提交评论