2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题含解析_第1页
2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题含解析_第2页
2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题含解析_第3页
2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题含解析_第4页
2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年上海市复旦初级中学九年级数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆3.如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为()A.米 B.米 C.米 D.米4.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④5.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=06.如图,在中,,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似图形,使得的边长是的边长的2倍.设点的坐标是,则点的坐标是()A. B. C. D.7.如图,点是中边的中点,于,以为直径的经过,连接,有下列结论:①;②;③;④是的切线.其中正确的结论是()A.①② B.①②③ C.②③ D.①②③④8.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°9.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=10.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)11.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.12.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()A.56° B.55°C.35° D.34°二、填空题(每题4分,共24分)13.对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的两个根,则x1⊗x2=________.14.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.15.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.16.如图,是半圆的直径,,则的度数是_______.17.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是_____.节水量/m30.20.250.30.40.5家庭数/个2467118.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.三、解答题(共78分)19.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)△A2B2C2的面积是平方单位.20.(8分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.21.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.22.(10分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.23.(10分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示):(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:)24.(10分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?25.(12分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?26.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.2、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3、B【分析】根据光线从点出发经平面镜反射后刚好射到大厦的顶端处,可知,再由,可得,从而可以得到,即可求出CD的长.【详解】∵光线从点出发经平面镜反射后刚好射到大厦的顶端处∴∵∴∴∴∵米,米,米∴∴CD=16(米)【点睛】本题考查的知识点是相似三角形的性质与判定,通过判定三角形相似得到对应线段成比例,构成比例是关键.4、C【解析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.5、C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=61,化简整理得,x2﹣9x+8=1.故选C.6、A【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据相似三角形的性质求出CE,B′E的长,得到点B′的坐标.【详解】作BD⊥x轴于D,B′E⊥x轴于E,∵点的坐标是,点的坐标是,∴CD=2,BD=,由题意得:C∽△,相似比为1:2,∴,∴CE=4,B′E=1,∴点B′的坐标为(3,-1),故选:A.【点睛】本题考查了位似变换、坐标与图形性质,熟练掌握位似变换的性质是解答的关键.7、D【分析】由直径所对的圆周角是直角,即可判断出选项①正确;由O为AB的中点,得出AO为AB的一半,故AO为AC的一半,选项③正确;由OD为三角形ABC的中位线,根据中位线定理得到OD与AC平行,由AC与DE垂直得出OD与DE垂直,,选项④正确;由切线性质可判断②正确.【详解】解:∵AB是圆的直径,∴,∴,选项①正确;连接OD,如图,∵D为BC的中点,O为AB的中点,∴DO为的中位线,∴,又∵,∴,∴,∴DE为圆O的切线,选项④正确;又OB=OD,∴,∵AB为圆的直径,∴∵∴∴,选项②正确;∴AD垂直平方BC,∵AC=AB,2OA=AB∴,选项③正确故答案为:D.【点睛】本题考查的知识点主要是圆的切线的判定及其性质,圆周角定理及其推论,充分理解各知识点并能熟练运用是解题的关键.8、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.9、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】BADCAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.10、D【分析】由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.【详解】∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(﹣1,﹣3)符合.故选D.【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.11、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.12、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得∠C的度数.【详解】解:AB为⊙O的直径,点D为⊙O上的一个点故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.二、填空题(每题4分,共24分)13、±4【解析】先解得方程x2﹣1x+8=0的两个根,然后分情况进行新定义运算即可.【详解】∵x2﹣1x+8=0,∴(x-2)(x-4)=0,解得:x=2,或x=4,当x1>x2时,则x1⊗x2=4×2﹣22=4;当x1<x2时,则x1⊗x2=22﹣2×4=﹣4.故答案为:±4.【点睛】本题主要考查解一元二次方程,解此题的关键在于利用因式分解法求得方程的解.14、【解析】由,知点A,C都在BD的垂直平分线上,因此,可连接交于点,易证是等边三角形,是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC的长度,应用勾股定理可求解.【详解】解:如图,连接交于点∵,,,∴垂直平分,是等边三角形∴,,∵∴,∴∴∴∵∴是等边三角形∴∴,∴∴【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.15、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【详解】解:连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

连接AC,过点A做AF⊥CE交CE于点F,

设OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案为:【点睛】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.16、130【分析】根据AB为直径,得到∠ACB=90°,进而求出∠ABC,再根据圆内接四边形性质即可求出∠D.【详解】解:∵AB为直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四边形ABCD是圆内接四边形,∴∠D=180°-∠ABC=130°.故答案为:130°【点睛】本题考查了“直径所对的角是圆周角”、“圆内接四边形对角互补”、“直角三角形两锐角互余”等定理,熟知相关定理,并能灵活运用是解题关键.17、110m1.【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.125=110(m1),故答案为:110m1.【点睛】此题考查的是根据样本估计总体,掌握样本平均数的公式是解决此题的关键.18、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)1【分析】(1)根据平移的方向与距离进行画图即可;(2)根据点B为位似中心,且位似比为2:1进行画图即可;(3)由网格特点可知,△ABC是等腰直角三角形,∠ACB=90°,根据坐标可求边长和面积,再根据相似比即可求出面积.【详解】解:(1)如图所示,△ABC向下平移4个单位长度得到的△A1B1C1;(2)如图所示,△A2B2C2即为所求;(3)则由网格特点可知:AC=BC=,AC⊥BC,∴△ABC的面积=.又∵△A2B2C2与△ABC位似,且位似比为2:1,∴△A2B2C2的面积=.故答案为:1.【点睛】本题主要考查了利用平移变换和位似变换进行作图,解决问题的关键是掌握:平移图形时,要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20、(1);(2).【分析】(1)将点代入中即可求出k的值,求得反比例函数的解析式;(2)根据题意列出方程组,根据点在第一象限解出方程组即可.【详解】(1)一次函数的图象经过点反比例函数的解析式为(2)由已知可得方程组,解得或经检验,当或时,,所以方程组的解为或∵点在第一象限∴【点睛】本题考查了一次函数和反比例函数的问题,掌握一次函数和反比例函数的性质、解二元一次方程组的方法是解题的关键.21、(1)详见解析;(2)详见解析;(3)4【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出∽,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出∽,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:平分,∽∴BD是四边形的“相似对角线”.(3)是四边形的“相似对角线”,三角形与三角形相似.又∽过点作垂足为则【点睛】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.22、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键.23、(1)90海里;(2)1.4小时.【分析】(1)过点M作MD⊥AB于点D,根据AM=180海里以及△AMD的三角函数求出MD的长度;(2)根据三角函数求出MB的长度,然后计算.【详解】解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB=60海里,∴60÷20≈1.4(小时),答:渔船从B到达小岛M的航行时间约为1.4小时.考点:三角函数的实际应用24、(1)见解析(2)P(积为奇数)=【分析】(1)用树状图列举出2次不放回实验的所有可能情况即可;(2)看是奇数的情况占所有情况的多少即可.【详解】(1)(2)P(积为奇数)=25、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)首先设一次函数解析式为:y=kx+b,然后根据函数图象,将两组对应值代入解析式即可得解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论