甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题含解析_第1页
甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题含解析_第2页
甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题含解析_第3页
甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题含解析_第4页
甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省定西市通渭县第二中学2024届数学高三第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i2.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.3.等比数列若则()A.±6 B.6 C.-6 D.4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②5.等差数列中,,,则数列前6项和为()A.18 B.24 C.36 D.726.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.7.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.128.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A. B.C. D.9.已知复数,,则()A. B. C. D.10.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.11.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是()A. B. C. D.12.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设变量,满足约束条件,则目标函数的最小值为______.14.某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多______天.15.如图,在中,已知,为边的中点.若,垂足为,则的值为__.16.已知函数,在区间上随机取一个数,则使得≥0的概率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.18.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.19.(12分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.20.(12分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.21.(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.22.(10分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为2、D【解析】

以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.3、B【解析】

根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.4、C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.5、C【解析】

由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】∵等差数列中,,∴,即,∴,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.6、B【解析】

列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.7、D【解析】

推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.8、A【解析】

由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.9、B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.10、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.11、B【解析】

由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,,令,又,为周期为的偶函数,当时,,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.12、C【解析】

由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-8【解析】

通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.14、72【解析】

根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】

,由余弦定理,得,得,,,所以,所以.点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可.16、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】

(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.18、(1)证明见解析(2)(3)【解析】

(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.20、(1)(2)【解析】

(1)代入计算即可.(2)设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为(2)由题意知直线AB的斜率存在,可设直线AB的方程为,,.因为,所以,联立,化简得,所以,,所以,,解得,所以.【点睛】本题考查抛物线的方程以及联立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论