版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省西安市名校数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知Rt△ABC中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是()A.sinA= B.cosA= C.tanA= D.tanB=2.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm23.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-84.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=06.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为()A.5个 B.4个 C.3个 D.2个7.如图,已知是的外接圆,是的直径,是的弦,,则等于()A. B. C. D.8.下列事件是必然事件的是()A.地球绕着太阳转 B.抛一枚硬币,正面朝上C.明天会下雨 D.打开电视,正在播放新闻9.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣310.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1011.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个12.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.二、填空题(每题4分,共24分)13.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.14.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.15.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.16.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出______个小分支.17.如图,与关于点成中心对称,若,则______.18.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.三、解答题(共78分)19.(8分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.(8分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.21.(8分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm22.(10分)在平面直角坐标系中,抛物线:沿轴翻折得到抛物线.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当时,求抛物线和围成的封闭区域内(包括边界)整点的个数;②如果抛物线C1和C2围成的封闭区域内(包括边界)恰有个整点,求m取值范围.23.(10分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=,求直线AB对应的函数表达式.24.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.25.(12分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.26.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组
研究报告
小组展示
答辩
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?
参考答案一、选择题(每题4分,共48分)1、D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此选项错误;B、cosA=,故此选项错误;C、tanA=,故此选项错误;D、tanB=,故此选项正确.故选:D.
【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.2、C【解析】试题解析:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴纸盒侧面积=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴当x=时,纸盒侧面积最大为.故选C.考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.3、C【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.4、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.5、A【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.6、B【分析】根据折叠的性质得到,于是得到,求得是直角三角形;设AB=x,则AD=2x,由相似三角形的性质可得CP=x,可求BP=PG=x=PN,可判断②③,由折叠的性质和平行线的性质可得∠PMF=∠FPM,可证PF=FM;由,且∠G=∠D=90°,可证△PEG∽△CMD,则可求解.【详解】∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=×180°=90°,∴△CMP是直角三角形;故①符合题意;∵AD=2AB,∴设AB=x,则AD=BC=2x,∵将矩形ABCD对折,得到折痕MN;∴AM=DM=AD=x=BN=NC,∴CMx,∵∠PMC=90°=∠CNM,∠MCP=∠MCN,∴△MCN∽△NCP,∴CM2=CN•CP,∴3x2=x×CP,∴CP=x,∴∴AB=BP,故②符合题意;∵PN=CP﹣CN=x-x=x,∵沿着MP折叠,使得AM与EM重合,∴BP=PG=x,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=x,∠B=∠G=90°∴,∵,∴,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,综上:①②③⑤符合题意,共4个,故选:B.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,折叠的性质,勾股定理,直角三角形的性质,矩形的性质等知识,利用参数表示线段的长度是解题的关键.7、C【分析】由直径所对的圆周角是直角,可得∠ADB=90°,可计算出∠BAD,再由同弧所对的圆周角相等得∠BCD=∠BAD.【详解】∵是的直径∴∠ADB=90°∴∠BAD=90°-∠ABD=32°∴∠BCD=∠BAD=32°.故选C.【点睛】本题考查圆周角定理,熟练运用该定理将角度进行转换是关键.8、A【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意;故选A.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【详解】A.2x+y=1是二元一次方程,故不正确;B.x2+1=2xy是二元二次方程,故不正确;C.x2+=3是分式方程,故不正确;D.x2=2x-3是一元二次方程,故正确;故选:D10、C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.11、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.二、填空题(每题4分,共24分)13、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.14、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.15、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,
∴随机抽取一张点数为6的扑克,其概率是
故答案为【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、6【分析】设这种植物每个支干长出个小分支,根据主干、支干和小分支的总数是43,即可得出关于的一元二次方程,解之取其正值即可得出结论.【详解】解:设这种植物每个支干长出个小分支,依题意,得:,解得:(不合题意,舍去),.故选:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17、【分析】由题意根据中心对称的定义可得AB=DE,从而即可求值.【详解】解:与△DEC关于点成中心对称,.【点睛】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义即把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.18、.【解析】直接利用概率公式求解可得.【详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【点睛】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.三、解答题(共78分)19、(1)详见解析;(2)详见解析【分析】(1)根据题意得出,,根据AAS即可证明;(2)由(1)可得到,再根据菱形的性质得出,即可证明平行四边形OCFD是矩形.【详解】证明:(1),,.E是CD中点,,又(AAS)(2),,.,四边形OCFD是平行四边形,平行四边形ABCD是菱形,.平行四边形OCFD是矩形.【点睛】此题考查矩形的判定和全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行解答.20、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;
(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,
∴∠OAC=∠OAB=45°,
∴∠EAB=∠EAF-∠BAF=45°,
∴∠EAB=∠BAF=45°,
在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),
∴BE=BF;
(2)①∵∠BAC=90°,∠EAF=90°,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),
∴∠EBA=∠FCA,
又∵∠KGB=∠AGC,
∴△AGC∽△KGB;
②当∠EBF=90°时,∵EF=BF,
∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.21、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.22、(1)(-1,-1);(2)①整点有5个.②≤.【分析】(1)可先求抛物线的顶点坐标,然后找到该店关于x轴对称的点的坐标即为抛物线的顶点坐标.(2)①先求出当时,抛物线和的解析式并画在同一个直角坐标系中即可确定整点的个数;②结合整点的个数,确定抛物线与轴的一个交点的横坐标的取值范围,从而代入抛物线解析式中确定m的取值范围.【详解】(1)∵∴的顶点坐标为∵抛物线:沿轴翻折得到抛物线.∴的顶点坐标为(,)(2)①当时,,.根据图象可知,和围成的区域内(包括边界)整点有5个.②抛物线在和围成的区域内(包括边界)恰有个整点,结合函数图象,可得抛物线与轴的一个交点的横坐标的取值范围为≤.将(1,)代入,得到,将(2,)代入,得到,结合图象可得≤.【点睛】本题主要考查二次函数,掌握二次函数的图象和性质及整点的定义是解题的关键.23、(1)见解析;(2)【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,,OB=1,∴,∴点A坐标为(2,0),∵△OAB∽△CAO,∴,即,∴,∴点C坐标为;设直线AB对应的函数表达式为y=kx+b,则,∴∴.即直线AB对应的函数表达式为.【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于夫妻双方离婚协议书
- 土地租赁合同双方协议书七篇
- 2025无财产离婚协议书
- 面神经炎病因介绍
- 错构瘤病因介绍
- 荨麻疹病因介绍
- 11化学中考真题汇编《氧气的性质》及答案
- (2024)乳制品加工项目可行性研究报告写作范本(一)
- 2024-2025学年人教版八年级英语上学期期末真题 专题01 单项选择(安徽专用)
- 2023年耐磨剂项目融资计划书
- GB/T 27692-2011高炉用酸性铁球团矿
- 整套教学课件《中级财务会计》
- 中国当代文学专题汇集
- 廉洁教育培训-廉洁从业-快乐人生课件
- 基坑开挖、土方回填危险源辨识及风险分级评价清单
- 超星尔雅学习通《九型人格之职场心理(中国九型人格导师协会)》章节测试含答案
- 《注册建造师执业工程规模标准》
- 豁免知情同意申请表【模板】
- 奥运会的历史课件
- 医学高级职称评审答辩报告PPT模板
- 铝型材挤压车间操作流程
评论
0/150
提交评论