版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山西省壶关县九年级数学第一学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A. B.C. D.2.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切3.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.4.图中信息是小明和小华射箭的成绩,两人都射了10箭,则射箭成绩的方差较大的是()A.小明 B.小华 C.两人一样 D.无法确定5.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B. C. D.6.四边形为平行四边形,点在的延长线上,连接交于点,则下列结论正确的是()A. B. C. D.7.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交8.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1789.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)()A. B. C. D.10.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.11.如图所示的几何体的左视图是()A. B. C. D.12.计算的值为()A.1 B.C. D.二、填空题(每题4分,共24分)13.已知⊙O的内接正六边形的边心距为1.则该圆的内接正三角形的面积为_____.14.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).16.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.17.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.18.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.三、解答题(共78分)19.(8分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.20.(8分)如图,点A的坐标为(0,﹣2),点B的坐标为(﹣3,2),点C的坐标为(﹣3,﹣1).(1)请在直角坐标系中画出△ABC绕着点A顺时针旋转90°后的图形△AB′C′;(2)直接写出:点B′的坐标,点C′的坐标.21.(8分)小华为了测量楼房的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处.已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房的高度.(计算结果精确到)(参考数据:,,)22.(10分)如图,为反比例函数(x>0)图象上的一点,在轴正半轴上有一点,.连接,,且.(1)求的值;(2)过点作,交反比例函数(x>0)的图象于点,连接交于点,求的值.23.(10分)如图,点A(1,m2)、点B(2,m﹣1)是函数y=(其中x>0)图象上的两点.(1)求点A、点B的坐标及函数的解析式;(2)连接OA、OB、AB,求△AOB的面积.24.(10分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.25.(12分)某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075_______若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.(1)请计算小张的学期总评成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?26.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.
参考答案一、选择题(每题4分,共48分)1、A【分析】设半径OA绕轴心旋转的角度为n°,根据弧长公式列出方程即可求出结论.【详解】解:设半径OA绕轴心旋转的角度为n°根据题意可得解得n=54即半径OA绕轴心旋转的角度为54°故选A.【点睛】此题考查的是根据弧长,求圆心角的度数,掌握弧长公式是解决此题的关键.2、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.3、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,
∴AB'=AB,∠BAB'=50°,∴,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.4、B【分析】根据图中的信息找出波动性小的即可.【详解】解:根据图中的信息可知,小明的成绩波动性小,则这两人中成绩稳定的是小明;
故射箭成绩的方差较大的是小华,
故选:B.【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【解析】设,那么点(3,2)满足这个函数解析式,∴k=3×2=1.∴.故选C6、D【分析】根据四边形为平行四边形证明,从而出,对各选项进行判断即可.【详解】∵四边形为平行四边形∴∴∴∴∵,∴故答案为:D.【点睛】本题考查了平行四边形的线段比例问题,掌握平行四边形的性质、相似三角形的性质以及判定是解题的关键.7、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.8、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.9、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论.【详解】故选:B.【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键.10、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.12、B【解析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【详解】解:故选B.【点睛】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.二、填空题(每题4分,共24分)13、4【分析】作出⊙O及内接正六边形ABCDEF,连接OC、OB,过O作ON⊥CE于N,易得△COB是等边三角形,利用三角函数求出OC,ON,CN,从而得到CE,再求内接正三角形ACE的面积即可.【详解】解:如图所示,连接OC、OB,过O作ON⊥CE于N,∵多边形ABCDEF是正六边形,∴∠COB=60°,∵OC=OB,∴△COB是等边三角形,∴∠OCM=60°,∴OM=OC•sin∠OCM,∴OC=.∵∠OCN=30°,∴ON=OC=,CN=1,∴CE=1CN=4,∴该圆的内接正三角形ACE的面积=,故答案为:4.【点睛】本题考查圆的内接多边形与三角函数,利用边心距求出圆的半径是解题的关键.14、【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.,,方程有两个不相等的实数根,,.故答案为:.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.16、【分析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【点睛】考核知识点:扇形面积计算.熟记公式是关键.17、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.18、1【分析】依题意可知所求的长度等于AB的长,通过解直角△ABC即可求解.【详解】如图,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【点睛】本题考查了解直角三角形的应用−坡度坡角问题.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.三、解答题(共78分)19、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>−,在m>−的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m²=8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-(2)选取一个整数0,则原方程为,x²-2x=0解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20、(1)见解析;(2)(4,1),(1,1).【分析】(1)利用网格特点和旋转的性质画出B、C点的对应点B′、C′即可;(2)利用(1)所画图形写出点B′的坐标,点C′的坐标.【详解】解:(1)如图,△ABC′为所作;(2)点B′的坐标为(4,1),点C′的坐标为(1,1).故答案为(4,1),(1,1).【点睛】本题考查了坐标和图形的变化-旋转,作出图形,利用数形结合求解更加简便21、.【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.【详解】作DH⊥AB于H,
∵∠DBC=15°,BD=20,∴,,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22、(1)k=12;(2).【分析】(1)过点作交轴于点,交于点,易知OH长度,在直角三角形OHA中得到AH长度,从而得到A点坐标,进而算出k值;(2)先求出D点坐标,得到BC长度,从而得到AM长度,由平行线得到,所以【详解】解:(1)过点作交轴于点,交于点.(2)【点睛】本题主要考查反比例函数与相似三角形的综合问题,难度不大,解题关键在于求出k23、(1)A(1,2),B(2,1),函数的解析式为y=;(2)【分析】(1)根据反比例函数图象上的点的坐标特征,得到k=m2=2(m﹣1),解得m的值,即可求得点A、点B的坐标及函数的解析式;(2)由反比例函数系数k的几何意义,根据S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB即可求解.【详解】(1)点A(1,m2)、点B(2,m﹣1)是函数y=(其中x>0)图象上的两点,∴k=m2=2(m﹣1),解得:m=2,k=2,∴A(1,2),B(2,1),函数的解析式为:y=;(2)作AM⊥x轴于M,BN⊥x轴于N,∴S△AOM=S△BON=k,∴S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB=(2+1)(2﹣1)=.【点睛】本题主要考查反比例函数的待定系数法和几何图形的综合,掌握反比例函数比例系数k的几何意义,是解题的关键.24、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电商渠道运营合作合同版B版
- 2025版航空餐食供应合同书3篇
- 二零二五年劳动合同标的工资和福利详细规定3篇
- 脑机接口创新发展策略及实施路径
- 二零二五年度国企跨部门协作项目聘任合同范本3篇
- 二零二五年度国有企业股权质押监管执行协议3篇
- 2024年订单合同协议
- 二零二五年SPF猪饲养基地资源整合与费用分配合同2篇
- 二零二五年度充电桩安全评估劳务分包合同3篇
- 2025版白酒经销商年度销售奖励合同范本3篇
- 抖音直播电商项目计划书抖音电商创业商业计划书抖音直播带货计划书抖音电商运营方案
- TCPQS XF003-2023 灭火器产品维修、更换及售后服务
- htr-pm学习课件18燃耗测量系统
- GB/T 24218.2-2009纺织品非织造布试验方法第2部分:厚度的测定
- 2022-2023学年度二年级数学.(上册)寒假作业【每日一练】
- 铸牢中华民族共同体意识学习PPT
- 公司年会小品《老同学显摆大会》台词剧本手稿
- 奖励旅游策划与组织课件
- 《信息素养与实践》课程教学大纲
- 行政事业单位内部控制规范讲解课件
- 鸡舍通风设计
评论
0/150
提交评论