版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖北省武汉市江夏区第六中学数学九年级第一学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C.“367人中至少有2人生日相同”是必然事件D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是.2.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b3.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.4.计算:x(1﹣)÷的结果是()A. B.x+1 C. D.5.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°6.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A. B. C. D.7.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为()个.A.1 B.2 C.3 D.48.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.9.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°10.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.11.下列方程中没有实数根的是()A. B.C. D.12.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.6与x的2倍的和是负数,用不等式表示为.14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.15.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.16.在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_______cm217.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个18.在中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与相似.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB∶BD=.(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.20.(8分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,=,求CE的长.21.(8分)先化简,再求值:·,其中满足22.(10分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)23.(10分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.24.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).25.(12分)如图,抛物线y=﹣x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.26.已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】利用随机事件和必然事件的定义对A、C进行判断;利用比较两事件的概率的大小判断游戏的公平性对B进行判断;利用中心对称的性质和概率公式对D进行判断.【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是,所以D选项错误.故选:C.【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.2、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.3、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.4、C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式==.故选:C.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.5、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.6、D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,
∴两次摸到的球的颜色相同的概率为:.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,
故选:C.【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.8、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.9、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.10、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.11、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.二、填空题(每题4分,共24分)13、6+2x<1【解析】试题分析:6与x的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.解:x的2倍为2x,6与x的2倍的和写为6+2x,和是负数,∴6+2x<1,故答案为6+2x<1.14、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:
红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.
故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.15、.【分析】根据题意,用的面积减去扇形的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴阴影部分的面积为:=,故答案为:.【点睛】本题考查不规则图形面积的求法,属中档题.16、1【解析】由题意,在长为8cm宽6cm的矩形中,截去一个矩形使留下的矩形与原矩形相似,根据相似形的对应边长比例关系,就可以求解.【详解】解:设宽为xcm,
∵留下的矩形与原矩形相似,解得∴截去的矩形的面积为∴留下的矩形的面积为48-21=1cm2,
故答案为:1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.17、14【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.18、【解析】当时,∵∠A=∠A,∴△AED∽△ABC,此时AE=;当时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=;故答案是:.三、解答题(共78分)19、(1);(2).【分析】(1)过D点作DE⊥AB于点E,根据相似三角形的判定易证△BDE∽△BAC,可得,再根据角平分线的性质可得DE=CD,利用等量代换即可得到tan∠DAC的值;(2)先利用特殊角的三角形函数得到∠CAD=30°,进而得到∠B=30°,根据直角三角形中30°角所对直角边为斜边的一半得到DE的长,进而得到CD与AC的长,再利用三角形的面积公式求解即可.【详解】解:(1)如图,过D点作DE⊥AB于点E,在△BDE与△BAC中,∠BED=∠C=90°,∠B=∠B,∴△BDE∽△BAC,∴,∵AD是∠BAC的平分线,∴DE=CD,∴,∴tan∠DAC;(2)∵tan∠DAC,∴∠DAC=30°,∴∠BAC=2∠DAC=60°,∴∠B=90°﹣∠BAC=30°,∴DE=BD=2,∴CD=DE=2,∴BC=BD+CD=6,∵,∴,∴S△ABC=.【点睛】本题主要考查锐角三角函数,角平分线的性质,相似三角形的判定与性质,解此题的关键在于熟练掌握根据角平分线的性质作出辅助线.20、(1)证明见详解;(2).【分析】(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.
(2)根据AC=4,=,求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出,求出即可.【详解】(1)答:BC与⊙O相切.
证明:连接AE,
∵AC是⊙O的直径
∴∠E=90°,
∴∠EAD+∠AFE=90°,
∵BF=BC,
∴∠BCE=∠BFC=∠AFE,
∵E为弧AD中点,
∴∠EAD=∠ACE,
∴∠BCE+∠ACE=∠EAD+∠AFE=90°,
∴AC⊥BC,
∵AC为直径,
∴BC是⊙O的切线.
(2)解:∵⊙O的半为2,
∴AC=4,
∵=∴BC=3,AB=5,
∴BF=3,AF=5-3=2,
∵∠EAD=∠ACE,∠E=∠E,
∴△AEF∽△CEA,
∴∴EC=2EA,
设EA=x,则有EC=2x,
由勾股定理得:,∴(负数舍去),
即.【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力.21、2x-6,-2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再解方程得出x的值,继而由分式有意义的条件得出确定的x的值,代入计算可得.【详解】原式,,当时,分式无意义,舍去;当时,代入上式,得:原式.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.22、小亮说的对,CE为2.6m.【解析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.23、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.24、(1)画图见解析;(2)点B所经过的路径长为.【解析】(1)让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.
(2)旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【详解】(1)如图.(2)由(1)知这段弧所对的圆心角是90°,半径AB==5,∴点B所经过的路径长为.【点睛】本题主要考查了作旋转变换图形,勾股定理,弧长计算公式,熟练掌握旋转的性质和弧长的计算公式是解答本题的关键.25、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2时,四边形CQMD是平行四边形;(3)存在,点Q(3,2)或(﹣1,0).【分析】(1)令抛物线关系式中的x=0或y=0,分别求出y、x的值,进而求出与x轴,y轴的交点坐标;(2)用m表示出点Q,M的纵坐标,进而表示QM的长,使CD=QM,即可求出m的值;(3)分三种情况进行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分别画出相应图形进行解答.【详解】解:(1)抛物线y=﹣x2+x+2,当x=0时,y=2,因此点C(0,2),当y=0时,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此点A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵点D与点C关于x轴对称,∴点D(0,﹣2),CD=4,设直线BD的关系式为y=kx+b,把D(0,﹣2),B(4,0)代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏省安全员《A证》考试题库
- 灵芝种植产业基地项目可行性研究报告-灵芝市场需求持续扩大
- 广州中医药大学《试剂生产工艺》2023-2024学年第一学期期末试卷
- 2025青海省建筑安全员-B证考试题库及答案
- 广州医科大学《哲学通论》2023-2024学年第一学期期末试卷
- 2025辽宁建筑安全员考试题库
- 2025年江苏建筑安全员考试题库及答案
- 2025年-江苏省安全员《B证》考试题库及答案
- 《FOOD中国饮食文化》课件
- 【语文课件】冀中的地道战课件
- 你比我猜成语
- 异质结完整分
- 脓毒症1小时bundle质量控制
- 第7讲 高斯光束的聚焦和准直课件
- 骨科患者术后疼痛管理的新进展
- 小学生三好学生竞选演讲稿PPT幻灯片
- 01S201室外消火栓安装图集
- 蒸馏酒及配制酒卫生检验原始记录
- 高一英语外研版必修一(2019)Unit 1 Period 8 Writing-Writing a journal entry(学案)
- 钻井HSE作业风险控制
- S7-200SMARTPLC应用技术PPT完整全套教学课件
评论
0/150
提交评论