版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖北省襄阳市枣阳市蔡阳中学数学九上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>02.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.3.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点4.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.85.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m6.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%7.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.8.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.9.在直角坐标系中,点关于坐标原点的对称点的坐标为()A. B. C. D.10.如图,在中,是斜边上的高,则图中的相似三角形共有()A.1对 B.2对 C.3对 D.4对11.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A. B. C. D.12.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①二、填空题(每题4分,共24分)13.如图,在中,点分别是边上的点,,则的长为________.14.如图,在平面直角坐标系中,已知点,为平面内的动点,且满足,为直线上的动点,则线段长的最小值为________.15.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.16.四边形ABCD是☉O的内接四边形,,则的度数为____________.17.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.18.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.三、解答题(共78分)19.(8分)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax1+bx﹣1a(其中a≠0).已知当x=0时,h=1;当x=10时,h=1.(1)求h关于x的函数表达式;(1)求斜抛物体的最大高度和达到最大高度时的水平距离.20.(8分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.21.(8分)如图,四边形ABCD中,AB∥CD,CD≠AB,点F在BC上,连DF与AB的延长线交于点G.(1)求证:CF•FG=DF•BF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=12,EF=8,求CD的长.22.(10分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.23.(10分)综合与探究:已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)求证:△ABC为直角三角形;(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.24.(10分)在全校的科技制作大赛中,王浩同学用木板制作了一个带有卡槽的三角形手机架.如图所示,卡槽的宽度DF与内三角形ABC的AB边长相等.已知AC=20cm,BC=18cm,∠ACB=50°,一块手机的最长边为17cm,王浩同学能否将此手机立放入卡槽内?请说明你的理由(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)25.(12分)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.26.抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;
参考答案一、选择题(每题4分,共48分)1、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.3、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.4、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.5、C【分析】迎水坡AB的坡比为3:4得出,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【详解】由题意得∴∴故选:C.【点睛】本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.6、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选:D.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.7、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.8、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.9、D【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).故选:D.【点睛】本题考查点的坐标特征,熟记特殊点的坐标特征是关键.10、C【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【详解】∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD所以有三对相似三角形,故选:C.【点睛】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.11、A【解析】试题分析:根据∠ABD的度数可得:弧AD的度数为110°,则弧BD的度数为70°,则∠BCD的度数为35°.考点:圆周角的性质12、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.二、填空题(每题4分,共24分)13、1【分析】根据平行线分线段成比例定理即可解决问题.【详解】∵,,∴,,则,,∴,∵,∴.故答案为:1.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14、【分析】由直径所对的圆周角为直角可知,动点轨迹为以中点为圆心,长为直径的圆,求得圆心到直线的距离,即可求得答案.【详解】∵,∴动点轨迹为:以中点为圆心,长为直径的圆,∵,,∴点M的坐标为:,半径为1,过点M作直线垂线,垂足为D,交⊙D于C点,如图:此时取得最小值,∵直线的解析式为:,∴,∴,∵,∴,∴最小值为,故答案为:.【点睛】本题考查了点的轨迹,圆周角定理,圆心到直线的距离,正确理解点到直线的距离垂线段最短是正确解答本题的关键.15、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.16、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.17、【分析】根据旋转的性质可知△ACC1为等边三角形,进而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的长,利用线段的和差即可得出结论.【详解】根据旋转的性质可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1为等边三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中点,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案为:2.【点睛】本题考查了旋转的性质以及直角三角形的性质,得出△ADC1是含20°的直角三角形是解答本题的关键.18、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【详解】圆锥的弧长,
圆锥的底面半径,
故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.三、解答题(共78分)19、(1)h=﹣x1+10x+1;(1)斜抛物体的最大高度为17,达到最大高度时的水平距离为2.【分析】(1)将当x=0时,h=1;当x=10时,h=1,代入解析式,可求解;(1)由h=−x1+10x+1=−(x−2)1+17,即可求解.【详解】(1)∵当x=0时,h=1;当x=10时,h=1.∴解得:∴h关于x的函数表达式为:h=﹣x1+10x+1;(1)∵h=﹣x1+10x+1=﹣(x﹣2)1+17,∴斜抛物体的最大高度为17,达到最大高度时的水平距离为2.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.20、(1);(2);(3)是,【分析】(1)若,则,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的长,过P点作PE⊥AO于E点,再利用△CPE∽△CAD,得出比例式求得P点的坐标,即可求得△POB的面积.(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则,综上所述,△PAB的面积是定值,为.【详解】(1)根据题意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半径为(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,当与相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD为圆P的直径∴CP=过P点作PE⊥AO于E点,则∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P点的纵坐标为∴△POB的面积=(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则.综上所述,△PAB的面积是定值,为.【点睛】本题考查的是圆及相似三角形的综合应用,熟练的掌握直线与圆的位置关系,相似三角形的判定是关键.21、(1)证明见解析;(2)1.【分析】(1)证明△CDF∽△BGF可得出结论;(2)证明△CDF≌△BGF,可得出DF=GF,CD=BG,得出EF是△DAG的中位线,则2EF=AG=AB+BG,求出BG即可.【详解】(1)证明:∵四边形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,∴△CDF∽△BGF.∴,∴CF•FG=DF•BF;(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF(AAS),∴DF=GF,CD=BG,∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×8﹣12=1,∴BG=1.【点睛】此题考查三角形相似的判定及性质定理,三角形全等的判定及性质定理,三角形的中位线定理,(2)利用(1)的相似得到三角形全等是解题的关键,由此利用中点E得到三角形的中位线,利用中位线的定理来解题.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;
(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.【详解】(1)∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴;(2)∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,;(3)由(1)得,,,∴,由(2),∴,∵,∴,在中,,∴【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;本题综合性强,有一定难度.23、(1)点A的坐标为(4,0),点B的坐标为(﹣1,0),点C的坐标为(0,1);(1)证明见解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三点坐标;
(1)先计算△ABC的三边长,根据勾股定理的逆定理可得结论;
(3)先证明△AEF∽△ACB,得∠AEF=∠ACB=90°,确定△AEF沿EF翻折后,点A落在x轴上点D处,根据△DCO≌△BCO时,BO=OD,列方程4-4t=1,可得结论.【详解】(1)解:当y=0时,﹣x+1=0,解得:x1=1,x1=4,∴点A的坐标为(4,0),点B的坐标为(﹣1,0),当x=0时,y=1,∴点C的坐标为(0,1);(1)证明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC为直角三角形;(3)解:由(1)可知△ABC为直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处,由翻折知,DE=AE,∴AD=1AE=4t,当△DCO≌△BCO时,BO=OD,∵OD=4﹣4t,BO=1,∴4﹣4t=1,t=,即:当t=秒时,△DCO≌△BCO.【点睛】本题考查二次函数的性质、抛物线与x轴的交点、翻折的性质、三角形相似和全等的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、王浩同学能将手机放入卡槽DF内,理由见解析【分析】作AD⊥BC于D,根据正弦、余弦的定义分别求出AD和CD的长,求出DB的长,根据勾股定理即可得到AB的长,然后与17比较大小,得到答案.【详解】解:王浩同学能将手机放入卡槽DF内,理由如下:作AD⊥BC于点D,∵∠C=50°,AC=20,∴AD=AC•sin50°≈20×0.8=16,CD=AC•cos50°≈20×0.6=12,∴DB=BC﹣CD=18﹣12=6,∴AB===,∴DF=AB=,∵17=<,∴王浩同学能将手机放入卡槽DF内.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义是解题的关键.25、(1),;(2)的最大值为1【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;
求PD的值有两种解法,解法一:可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,求PD长即为求P′B的长,在Rt△AP′P中,可将PP′的值求出,在Rt△PP′B中,根据勾股定理可将P′B的值求出;
解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在Rt△AEG中,可求出AG,EG的长,进而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根据勾股定理可将PD的值求出;
(2)将△PAD绕点A顺时针旋转90°,得到△P'AB,PD的最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络广告服务合同模板
- 供应商合同中的供应商价格条款
- 销售总代理合同书
- 牛羊养殖者购销合同
- 展览展台活动策划服务合同
- 迟到问题解决保证书
- 解除房屋买卖合同应注意细节
- 歌手演出协议书
- 版房屋买卖合同版版版示例
- 摄影器材捐赠意向书
- 2023年中国石化招聘笔试真题
- 中国普通食物营养成分表(修正版)
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 清华大学出版社机械制图习题集参考答案(课堂PPT)
- 卫生部城社区卫生服务中心基本标准
- 2021年考研英语真题(含答案解析).doc
- 销售商品调查明细表
- 工程四新技术应用
- 小儿常见眼病的诊治与预防PPT参考课件
- 银行税收自查报告(共5篇)
评论
0/150
提交评论