




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖北省麻城思源学校九年级数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.计算:x(1﹣)÷的结果是()A. B.x+1 C. D.2.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3 C. D.3.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A.①②③ B.① C.①② D.②③4.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个5.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.7.代数式有意义的条件是()A. B. C. D.8.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π9.用圆中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A. B. C. D.10.若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是()A. B. C. D.11.在反比例函数的图象在某象限内,随着的增大而增大,则的取值范围是()A. B. C. D.12.二次函数的顶点坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点,分别在线段,上,若,,,,则的长为________.14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),15.如果,那么_________.16.如图,已知A(1,y1),B(2,y2)为反比例函数y=图象上的两点,一个动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_________.17.如图,以点为位似中心,将放大后得到,,则____.18.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.三、解答题(共78分)19.(8分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.20.(8分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.21.(8分)解方程:22.(10分)在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接写出点B的坐标是;(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.23.(10分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.24.(10分)小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片,记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.小琴诵读《论语》的概率是.请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.25.(12分)一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个个球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宜”的概率为多少?(2)甲同学从中任取一球,记下汉字后放回袋中,然后再从袋中任取一球,请用画树图成列表的方法求出甲同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p甲;(3)乙同学从中任取一球,不放回,再从袋中任取一球,请求出乙同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小关系.26.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.
参考答案一、选择题(每题4分,共48分)1、C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式==.故选:C.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.2、C【分析】解直角三角形求得AB=2,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=2x,根据三角形面积公式即可得到S△BDHBD•ADx(2x)(x)2,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=2x,∴S△BDHBD•ADx(2x)(x)2,∴△BDH面积的最大值是.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.3、A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.4、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.5、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.6、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.7、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.8、B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.9、C【解析】根据题意和图形可知第一个图形转到红色,同时第二个转到蓝色或者第一个转到蓝色,同时第二个转到红色,可配成紫色,从而可以求得可配成紫色的概率.【详解】∵第一个转盘红色占∴第一个转盘可以分为1份红色,3份蓝色∴第二个转盘可以分为1份红色,2份蓝色配成紫色的概率是.故选C.【点睛】此题考查了概率问题,熟练掌握列表法与树状图法是解题的关键.10、B【分析】根据二次函数图象开口方向与坐标轴的交点坐标特点,利用排除法可解答.【详解】解:∵抛物线与x轴有两个交点,∴,故A正确,不符合题意;∵函数图象开口向下,
∴a<0,∵抛物线与y轴正半轴相交,∴c>0,∵抛物线对称轴在y轴的右侧,∴>0,∴b>0,∴abc<0,故B错误,符合题意;又∵图象与x轴的一个交点坐标是(1,0),
∴将点代入二次函数y=ax2+bx+c得a+b+c=0,故C正确,不符合题意,
∵当x=-1时,y=a-b+c,由函数图象可知,y=a-b+c<0,故D正确,不符合题意,
故选:B.【点睛】本题考查二次函数图象上点的坐标特征,是基础题型,也是常考题型.11、C【分析】由于反比例函数的图象在某象限内随着的增大而增大,则满足,再解不等式求出的取值范围即可.【详解】∵反比例函数的图象在某象限内,随着的增大而增大∴解得:故选:C.【点睛】本题考查了反比例函数的图象和性质,熟练掌握图象在各象限的变化情况跟系数之间的关系是关键.12、D【分析】已知二次函数y=2x2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】∵y=2x2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y=a(x−k)2+h的顶点坐标为(k,h),二、填空题(每题4分,共24分)13、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.14、∠ACP=∠B(或).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当时,△ACP∽△ABC.故答案为:∠ACP=∠B(或).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.15、【分析】将进行变形为,从而可求出的值.【详解】∵∴故答案为【点睛】本题主要考查代数式的求值,能够对原式进行适当变形是解题的关键.16、【分析】根据图意,连接AB并延长交x轴于点,此时线段AP与线段BP之差的最大值为,通过求得直线AB的解析式,然后令即可求得P点坐标.【详解】如下图,连接AB并延长交x轴于点,此时线段AP与线段BP之差的最大值为,将,代入中得,,设直线AB的解析式为,代入A,B点的坐标得,解得,∴直线AB的解析式为,令,得,∴此时P点坐标为,故答案为:.【点睛】本题主要考查了线段差最大值的相关内容,熟练掌握相关作图方法及解析式的求解方法是解决本题的关键.17、.【分析】直接利用位似图形的性质进而分析得出答案.【详解】解:∵以点为位似中心,将放大后得到,,∴.故答案为.【点睛】此题主要考查了位似变换,正确得出对应边的比值是解题关键.18、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.三、解答题(共78分)19、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6,0),D(4,3)代入y=ax+bx中,得解得:∴此抛物线的表达式为:y=x+x;(3)由于△POA底边为OA=6,∴当P为抛物线顶点时,△POA面积最大∴∴∴的最大值为【点睛】本题是一道二次函数与矩形相结合的题目,熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.20、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO,根据平行线的性质得出∠DAO=∠COB,∠ADO=∠COD,结合OA=OD得出∠COD=∠COB,从而得出△COD和△COB全等,从而得出切线;(2)、设⊙O的半径为R,则OD=R,OE=R+1,根据Rt△ODE的勾股定理求出R的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半径为1.21、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【详解】(1)解得,(2)解得【点睛】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.22、(1)点B的坐标为(3,1);(2)y=x2﹣x﹣2;(3)点A1在抛物线上;理由见解析;(4)存在,点P(﹣2,1).【分析】(1)首先过点B作BD⊥x轴,垂足为D,通过证明△BDC≌△COA即可得BD=OC=1,CD=OA=2,从而得知B坐标;(2)利用待定系数法,将B坐标代入即可求得;(3)画出旋转后的图形,过点作x轴的垂线,构造全等三角形,求出的坐标代入抛物线解析式即可进行判断;(4)由抛物线的解析式先设出P的坐标,再根据中心对称的性质与线段中点的公式列出方程求解即可.【详解】(1)如图1,过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,在△BDC和△COA中:∵∠BDC=∠COA,∠BCD=∠CAO,CB=AC,∴△BDC≌△COA(AAS),∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)旋转后如图1所示,过点A1作A1M⊥x轴,∵把△ABC绕着点C逆时针旋转90°,∴∠ABC=∠A1BC=90°,∴A1,B,C共线,在三角形BDC和三角形A1CM中:∵∠BDC=∠A1MC=90°,∠BCD=∠A1CM,A1C=BC,∴△BDC≌△A1CM∴CM=CD=3﹣1=2,A1M=BD=1,∴OM=1,∴点A1(﹣1,﹣1),把点x=﹣1代入y=x2﹣x﹣2,y=﹣1,∴点A1在抛物线上.(4)设点P(t,t2﹣t﹣2),点A(0,2),点C(1,0),点B(3,1),若点P和点C对应,由中心对称的性质和线段中点公式可得:,,无解,若点P和点A对应,由中心对称的性质和线段中点公式可得:,,无解,若点P和点B对应,由中心对称的性质和线段中点公式可得:,,解得:t=﹣2,t2﹣t﹣2=1所以:存在,点P(﹣2,1).【点睛】本题主要考查了抛物线与几何图形的综合运用,熟练掌握相关概念是解题关键.23、(1)n=60°;(2)见解析;(3)①m=120°,四边形AA2CC2是矩形;②AA2=3.【分析】(1)利用等腰三角形的性质求出∠COC1即可.(2)根据对角线相等的平行四边形是矩形证明即可.(3)①求出∠COC2即可,根据矩形的判定证明即可解决问题.②解直角三角形求出A2C2,再求出AA2即可.【详解】(1)解:如图1中,由旋转可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)证明:如图2中,∵OC=OA,OA1=OC1,∴四边形AA1CC1是平行四边形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四边形AA1CC1是矩形.(3)如图3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四边形AA2CC2是平行四边形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四边形AA2CC2是矩形.②∵AC=A2C2=AB•cos30°=4×=6,∴AA2=A2C2•cos30°=6×=3.【点睛】本题属于四边形综合题,考查了旋转变换,平行四边形的判定和性质,矩形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24、;【分析】(1)由题意直接根据概率公式即可求解;(2)利用列表法展示所有9种等可能性结果,再找出小琴和小江诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:小琴诵读《论语》的概率=;故答案为.方法一,列表如下小琴小江共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料)方法二,画树状图如下共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料).【点睛】本题考查列表法与树状图法即利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.25、(1);(2);(3).【分析】(1)由一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论