




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省弥勒市朋普中学九年级数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列图像中,当时,函数与的图象时()A. B. C. D.2.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±13.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大4.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=15.下列4个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或97.如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明△ABC~△EDC的是()A.∠A=∠E B. C.AB∥DE D.8.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.9.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()A. B. C. D.10.若反比例函数的图象在每一条曲线上都随的增大而增大,则的取值范围是()A. B. C. D.11.下列方程中,是一元二次方程的是()A.x+=0 B.ax2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=012.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为,则得方程()A. B.C. D.二、填空题(每题4分,共24分)13.如图,点在反比例函数的图象上,过点作AB⊥轴,AC⊥轴,垂足分别为点,若,,则的值为____.14.如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC.若,则等于__________.15.如图,正方形中,点为射线上一点,,交的延长线于点,若,则______16.已知A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,把y1与、的的值用小于号连接表示为________.17.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.18.抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c=0的解是_____.三、解答题(共78分)19.(8分)已知抛物线经过点(1,0),(0,3).(1)求该抛物线的函数表达式;(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.20.(8分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21.(8分)如图1,抛物线与轴交于,两点,与轴交于点,已知点,且对称轴为直线.(1)求该抛物线的解析式;(2)点是第四象限内抛物线上的一点,当的面积最大时,求点的坐标;(3)如图2,点是抛物线上的一个动点,过点作轴,垂足为.当时,直接写出点的坐标.22.(10分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求的面积.(3)在第一象限内,求当一次函数值大于反比例函数值时的反比例函数值取值范围.23.(10分)综合与探究:三角形旋转中的数学问题.实验与操作:
Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).24.(10分)如图,四边形ABCD内接于⊙O,∠BOD=140°,求∠BCD的度数.25.(12分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.26.如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据直线直线y=ax+b经过的象限得到a>0,b<0,与ab>0矛盾,则可对A进行判断;根据抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,由此可对B进行判断;根据抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,由此可对C进行判断;根据抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,并且b<0,得到直线与y轴的交点在x轴下方,由此可对D进行判断.【详解】解:A、对于直线y=ax+b,得a>0,b<0,与ab>0矛盾,所以A选项错误;
B、由抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,所以B选项错误;
C、由抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,所以C选项错误;
D、由抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,由于ab>0,则b<0,所以直线与y轴的交点在x轴下方,所以D选项正确.
故选:D.【点睛】本题考查了一次函数和二次函数的图像与性质,掌握函数的性质,从而判断图像是解题的基础.2、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.3、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.4、B【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为1的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程1x+1=0中未知数的最高次数不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一个未知数,且未知数的最高次数为1的整式方程,故是一元二次方程;C、方程y1+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.是否符合定义的条件是作出判断的关键.5、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形,也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,不符合题意,故此选项错误.故选A.【点睛】此题主要考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.7、D【分析】利用相似三角形的判定依次判断即可求解.【详解】A、若∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项A不符合题意;B、若,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项B不符合题意;C、若AB∥DE,可得∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项C不符合题意;D、若,且∠ACB=∠DCE,则不能证明△ABC~△EDC,故选项D符合题意;故选:D.【点睛】本题考查相似三角形的判定,熟知相似三角形的判定方法是解题的关键,判定时需注意找对对应线段.8、C【解析】试题解析:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选C.考点:二次函数的图象;一次函数的图象.9、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项.【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35℃,8时温度为:37℃∴当t=4时,y=37-35=2当t=8时,y=37-35=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值.10、B【分析】根据反比例函数的性质,可求k的取值范围.【详解】解:∵反比例函数图象的每一条曲线上,y都随x的增大而增大,
∴k−2<0,
∴k<2
故选B.【点睛】本题考查了反比例函数的性质,熟练掌握当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11、C【解析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=1时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.12、C【分析】设调价百分率为x,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x,则:故选:C.【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.二、填空题(每题4分,共24分)13、【分析】求出点A坐标,即可求出k的值.【详解】解:根据题意,设点A的坐标为(x,y),∵,,AB⊥轴,AC⊥轴,∴点A的横坐标为:;点A的纵坐标为:;∵点A在反比例函数的图象上,∴;故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是熟练掌握反比例函数图象上点的坐标特征.14、【分析】根据作图描述可知BD平分∠ABC,然后利用同弧所对的圆周角是圆心角的一半可求出∠CBD的度数,由∠ABD=∠CBD即可得出答案.【详解】根据作图描述可知BD平分∠ABC,∴∠ABD=∠CBD∵∠COD=70°∴∠BCD=∠COD=35°∴∠ABD=35°故答案为:35°.【点睛】本题考查了角平分线的作法,圆周角定理,判断出BD为角平分线,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.15、【分析】连接AC交BD于O,作FG⊥BE于G,证出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性质得出∠AED=30°,由直角三角形的性质得出OE=OA,求出∠FEG=60°,∠EFG=30°,进而求出OA的值,即可得出答案.【详解】连接AC交BD于O,作FG⊥BE于G,如图所示则∠BGF=∠EGF=90°∵四边形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=BF=∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=FG=∴BE=BG+EG=∵OA+AO=解得:OA=∴AB=OA=故答案为【点睛】本题考查了正方形和等腰直角三角形的性质,综合性较强,需要熟练掌握相关性质.16、【分析】根据反比例函数图象上点的坐标特征可分别计算出y1,y2,y3的值即可判断.【详解】∵A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,∴,,,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,由反比例函数确定函数值即可.17、20【解析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【详解】当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20.【点睛】本题考查平移的性质,解题的关键是确定出当AE⊥BC时,四边形AEFD的周长最小.18、﹣4或1.【分析】根据二次函数与轴的交点的横坐标即为一元二次方程根的性质,即可求得方程的解.【详解】抛物线y=ax2+bx+c经过点A(﹣4,0),B(1,0)两点,则ax2+bx+c=0的解是x=﹣4或1,故答案为:﹣4或1.【点睛】本题考查二次函数与轴的交点和一元二次方程根的关系,属基础题.三、解答题(共78分)19、(1);(2)将抛物线向左平移个单位,向上平移个单位,解析式变为.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)把函数化为顶点式,即可得到平移方式与平移后的函数表达式.【详解】(1)把(1,0),(0,3)代入抛物线解析式得:,解得:,则抛物线解析式为(2)抛物线将抛物线向左平移个单位,向上平移个单位,解析式变为.【点睛】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.20、(1)共有9种等可能的结果;(2).【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可.【详解】(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:.考点:列表法与树状图法.21、(1);(2)(3)或或或【分析】(1)由对称性可知抛物线与轴的另一个交点为,将点,坐标代入,联立方程组求解即可得到,即可得到抛物线的解析式.(2)作轴交直线于点,设直线BC:y=kx+b,代入B、C两点坐标求得直线为,设点为,则点为,,表示出S,化简整理可得,根据二次函数的性质得当时,的面积最大,此时点坐标为(3)根据A、B坐标易得AB=4,当PQ=3时满足条件,P点的纵坐标为±3,代入函数解析式求得P点的横坐标,即可得到P点的坐标.【详解】解:(1)由对称性可知抛物线与轴的另一个交点为把点,坐标代入,,解得抛物线的解析式为.(2)如图1,作轴交直线于点设直线BC:y=kx+b,代入B(3,0),C(0,-3)可得解得:∴直线为设点为则点为当时,的面积最大,代入,可得=,此时点坐标为(3)∵A(-1,0),B(3,0)∴AB=4∵∴PQ=3,即P点纵坐标为±3,当y=3时,解得:当y=-3时,解得:x1=0,x2=2,综上,当时,或或或.【点睛】本题为二次函数的综合,涉及知识点有待定系数法、二次函数的最值及分类讨论思想.22、(1)反比例函数的解析式为,直线AB的解析式为;(2)2;(3).【分析】(1)先根据可求出点B的坐标,再利用待定系数法即可得;(2)先根据直线AB的解析式求出点C的坐标,从而可得OC的长,再根据点B的坐标可得OC边上的高,然后根据三角形的面积公式即可;(3)结合点B的坐标,利用函数图象法即可得.【详解】(1),且点B位于第一象限,,的OA边上的高为,,解得,,设反比例函数的解析式为,将点代入得:,解得,则反比例函数的解析式为,设直线AB的解析式为,将点代入得:,解得,则直线AB的解析式为;(2)对于,当时,,即点C的坐标为,则,,的OC边上的高为2,则的面积为;(3)在第一象限内,一次函数值大于反比例函数值表示的是一次函数的图象位于反比例函数的图象的上方,则由函数图象得:此时反比例函数值取值范围为.【点睛】本题考查了利用待定系数法求一次函数和反比例函数的解析式、一次函数与反比例函数的综合等知识点,熟练掌握待定系数法是解题关键.23、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)【分析】(1)①根据矩形的性质、旋转的性质、等边三角形的判定方法解题;②根据两组对边分别平行的四边形是平行四边形解题;(2)过点作的垂线,交于点E,由旋转的性质得到对应边、对应角相等,进而证明△CDB≌△,即可解题;(3)先证明,再由相似三角形的性质解题,进而证明即可证明.【详解】解:(1)①60;②四边形AB′DC是平行四边形.证明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴∠C′AB′=∠CAB=60°,,.与都是等边三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四边形AB′DC是平行四边形.(2)证明:过点作的垂线,交于点E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:设AC与D交于点O,连接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,
【点睛】本题考查几何综合,其中涉及三角形的旋转、等边三角形的判定与性质、平行线的判定、平行四边形的判定、全等三角形的判定等知识,综合性较强,是常见考点,掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多媒体应用设计师沟通技能题及答案
- 贵州企业招聘2024贵州金融控股集团有限责任公司招聘笔试参考题库附带答案详解
- DB15T 3761-2024草地固碳潜力核算技术指南
- 山西吕梁特岗教师计划招聘笔试真题2024
- 多媒体应用设计师前沿技术及试题答案
- 核心考点的2024物理试题及答案
- 嘉峪关市第一人民医院招聘专业技术人员笔试真题2024
- 江苏省考保安试题及答案
- 河北邯郸市市直事业单位招聘工作人员笔试真题2024
- 解易方程面试题及答案
- (高清版)TDT 1055-2019 第三次全国国土调查技术规程
- 高效车间质量管理方法与工具介绍
- 中医养生的亚健康与调理方法
- 海氏岗位价值评估法教程、数据表及案例解析
- 小学创客课件智能台灯
- 江苏省苏州市2023-2024学年高二合格考政治模拟试题(含答案)
- 自愿退出俱乐部申请书
- SYT 0447-2014《 埋地钢制管道环氧煤沥青防腐层技术标准》
- 第19章 一次函数 单元整体教学设计 【 学情分析指导 】 人教版八年级数学下册
- (完整版)高速公路拌合站设置规划方案
- 《现代汉语》语音教学上课用课件
评论
0/150
提交评论