版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年天津市育华实验中学九年级数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分2.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于()A.4 B.6 C.8 D.103.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A. B.C. D.4.如图,正六边形内接于,连接.则的度数是()A. B. C. D.5.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9506.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A. B. C. D.7.一组数据3,7,9,3,4的众数与中位数分别是()A.3,9 B.3,3 C.3,4 D.4,78.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个9.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.410.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.5二、填空题(每小题3分,共24分)11.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.12.比较大小:_____1.(填“>”、“=”或“<”)13.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.14.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.15.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.16.已知二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0;⑤b2>4ac;⑥当x>1时,y随x的增大而减小.其中正确的说法有_____(写出正确说法的序号)17.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为3cm,则该莱洛三角形的周长为_______cm.18.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.三、解答题(共66分)19.(10分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.图1图2材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB水平,主索最低点为点P,点P距离桥面为2m;图3为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?20.(6分)随着科学技术的不断进步,草莓的品种越来越多样化,某基地农户计划尝试购进牛奶草莓和巧克力草莓新品种共5000株,其中牛奶草莓成本每株5元,巧克力草莓成本每株8元.(1)由于初次尝试该品种草莓种植,农户购进两种草莓品种的金额不得超过34000元,则牛奶草莓植株至少购进多少株?(2)农户按(1)中牛奶草莓的最少进货量购进牛奶草莓巧克力草莓植株,经过几个月的精心培育,可收获草莓共计2500千克,农户在培育过程中共花费25000元.农户计划采用直接出售与生态采摘出售两种方式进行售卖,其中直接出售牛奶草莓的售价为每千克30元,直接出售巧克力草莓的售价为每千克40元,且两种草莓各出售了500千克.而生态采摘出售时,两种品种幕莓的采摘销售价格一样,且通过生态采摘把余下的草莓全部销售完,但采摘过程中会有0.6a%的损耗,其中生态采摘出售草莓的单价比直接出售巧克力草莓的单价还高3a%(0<a≤75),这样该农户经营草莓的总利润为65250元,求a的值.21.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AF=2,求AE的长.22.(8分)已知:如图,在中,是边上的高,且,,,求的长.23.(8分)用适当的方法解下列一元二次方程.(1);(2).24.(8分)“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.25.(10分)解方程:(1)x2﹣4x+2=0;(2)26.(10分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=1.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.2、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出,再代入AD=4,AB=6,BC=12即可求出DE的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故选:C.【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.3、C【分析】根据垂线的作法即可判断.【详解】观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.【点睛】本题考查了作图-复杂作图、垂线,解决本题的关键是掌握作垂线的方法.4、C【解析】根据正六边形的内角和求得∠BCD,然后根据等腰三角形的性质即可得到结论.【详解】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=30°,
故选:C.【点睛】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.5、D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.6、D【分析】首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选D.【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.7、C【分析】由题意直接根据众数和中位数的定义进行分析求解判断即可.【详解】解:将数据重新排列为3,3,4,7,9,∴众数为3,中位数为4.故选:C.【点睛】本题主要考查众数、中位数,熟练掌握众数、中位数的定义是解题的关键.8、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.9、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.10、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.二、填空题(每小题3分,共24分)11、(4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标.【详解】∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为:(4,).【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.12、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.13、12【解析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x1﹣3x﹣10=0,(x﹣2)(x+1)=0,即x﹣2=0或x+1=0,∴x1=2,x1=﹣1.因为方程x1﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为2.所以该三角形的周长为:2×3=12.故答案为:12.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.14、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.15、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.16、②④⑤⑥【分析】①利用抛物线开口方向得到a<0,利用抛物线的对称轴在y轴的右侧得到b>0,利用抛物线与y轴的交点在x轴上方得到c>0,即可判断;②利用0<﹣<1得到b<﹣2a,则可对其进行判断;③利用x=﹣1时y的正负可对a﹣b+c进行判断;④利用a+c>b>0可对其进行判断;⑤根据抛物线与x轴交点的个数即可判断;⑥根据二次函数的图象和性质即可得出答案.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴a、b异号,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=﹣,∴0<﹣<1,∴b<﹣2a,即2a+b<0,所以②正确;∵x=﹣1时,y>0,∴a﹣b+c>0,所以③错误;∴a+c>b,而b>0,∴a+c>0,所以④正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,所以⑤正确;∵抛物线开口向下,在对称轴的右侧y随x的增大而减下,∴当x>1时,y随x的增大而减小,所以⑥正确.故答案为:②④⑤⑥.【点睛】本题主要考查二次函数的图象及性质,掌握二次函数的图象及性质并数形结合是解题的关键.17、【分析】直接利用弧长公式计算即可.【详解】解:该莱洛三角形的周长=3×.故答案为:.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18、(5,1)【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=OD=2,BE=OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.三、解答题(共66分)19、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;【分析】(1)利用待定系数法求取解析式即可;(2)利用抛物线对称性进一步求解即可.【详解】(1)甲,C(16,0)解:设抛物线的表达式为由题意可知,C点坐标为(16,0),P点坐标为(0,-8)将C(16,0),P(0,-8)代入,得解得.∴主索抛物线的表达式为(2)x=4时,,此时吊索的长度为m.由抛物线的对称性可得,x=-4时,此时吊索的长度也为m.同理,x=8时,,此时吊索的长度为mx=-8时,此时吊索的长度也为4m.∴四根吊索的总长度为13m【点睛】本题主要考查了抛物线解析式的求取与性质,熟练掌握相关概念是解题关键.20、(1)牛奶草莓植株至少购进2株;(2)a的值为1.【分析】(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据总价=单价×数量结合购进两种草莓品种的金额不得超过34000元,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据利润=销售收入﹣成本﹣消耗,即可得出关于a的一元二次方程,利用换元法解一元二次方程即可求出a值,取其小于等于75的值即可得出结论.【详解】解:(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据题意得:5x+8(5000﹣x)≤34000,解得:x≥2.答:牛奶草莓植株至少购进2株.(2)根据题意得:500×(30+40)+(100﹣500﹣500)(1﹣0.6a%)×40(1+3a%)﹣1000﹣34000=6510,令m=a%,则原方程可整理得:48m2﹣64m+13=0,解得:m1=,m2=,∴a1=×100=1,a2=×100=,∵0<a≤75,∴a1=1,a2=(不合题意,舍去).答:a的值为1.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用,根据题意正确列出不等式和方程是解答本题的关键.21、(1)答案见解析;(2).【解析】试题分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长.试题解析:()∵四边形是平行四边形,∴,,∴,,∵,,∴,∴.()四边形是平行四边形,∴,,又∵,∴,在中,,∵,∴,∴.22、【分析】根据直角三角形中,30°所对的直角边等于斜边的一半,解得AD的长,再由等腰直角三角形的两条腰相等可得DC的长,最后根据勾股定理解题即可.【详解】解:是边上的高【点睛】本题考查含30°的直角三角形、等腰直角三角形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可.【详解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.24、(1)共有12种等可能结果;(2)【解析】(1)用A、B、C、D分别表示石
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 撞人私了协议版
- 2024年健身设备采购合同3篇
- 2024年度原料采购与技术转让双向合作合同2篇
- 2024年度产品代理协议(医疗器械)3篇
- 出厂合格证管理制度(2篇)
- 《阅读与写作》课件
- 2024年度场地出租合同范本(个人)3篇
- 二零二四年二手音响设备销售合同及演出租赁服务3篇
- 农村山坪塘承包合同完整版
- 合伙经营洗煤厂协议书
- 浙江省稽阳联谊学校2024-2025学年高三上学期11月月考英语
- 《物业消防管理培训》课件
- 幼儿秋冬季常见病及预防
- 《房建项目交底安全》课件
- 2024-2030年中国粮食仓储设备行业供需状况及未来发展策略分析报告
- 申论公务员考试试题与参考答案
- 物理:第十三章《电路初探》复习(苏科版九年级上)省公开课获奖课件市赛课比赛一等奖课件
- 2.2-《做更好的自己》 课件-2024-2025学年统编版道德与法治七年级上册
- 2024年福建省农村信用社联合社招聘历年高频难、易错点500题模拟试题附带答案详解
- 高考评价体系对高考化学命题的影响与复习对策
- 互联网产品运营实战手册
评论
0/150
提交评论