2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题含解析_第1页
2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题含解析_第2页
2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题含解析_第3页
2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题含解析_第4页
2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省秦皇岛市抚宁县九年级数学第一学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.抛物线的开口方向是()A.向下 B.向上 C.向左 D.向右2.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为()A.2 B.2﹣2 C.4﹣2 D.2﹣3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.4.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.5.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为()A. B. C. D.6.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.8.下列交通标志中,是中心对称图形的是()A. B. C. D.9.下列各点中,在反比例函数图象上的点是A. B. C. D.10.的值为()A. B. C. D.11.如图,正六边形内接于,正六边形的周长是12,则的半径是()A.3 B.2 C. D.12.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°二、填空题(每题4分,共24分)13.在正方形网格中,△ABC的位置如图所示,则sinB的值为______________14.如果线段a、b、c、d满足,则=_________.15.方程(x+5)2=4的两个根分别为_____.16.如图,在中,,分别是,上的点,平分,交于点,交于点,若,且,则_______.17.把抛物线的顶点E先向左平移3个单位,再向上平移4个单位后刚好落在同一平面直角坐标系的双曲线上,那么=__________18.方程2x2-6x-1=0的负数根为___________.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.20.(8分)定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:(1)理解:如图1,在四边形ABCD中,若__________(填一种情况),则四边形ABCD是“准菱形”;(2)应用:证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)(3)拓展:如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.21.(8分)已知抛物线的解析式是y=x1﹣(k+1)x+1k﹣1.(1)求证:此抛物线与x轴必有两个不同的交点;(1)若抛物线与直线y=x+k1﹣1的一个交点在y轴上,求该二次函数的顶点坐标.22.(10分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?23.(10分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(10分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.25.(12分)如图,已知A(-1,0),一次函数的图像交坐标轴于点B、C,二次函数的图像经过点A、C、B.点Q是二次函数图像上一动点。(1)当时,求点Q的坐标;(2)过点Q作直线//BC,当直线与二次函数的图像有且只有一个公共点时,求出此时直线对应的一次函数的表达式并求出此时直线与直线BC之间的距离。26.如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.

参考答案一、选择题(每题4分,共48分)1、B【分析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c(a≠0)的二次项系数a的符号决定,据此进行判断即可.【详解】解:∵y=2x2的二次项系数a=2>0,

∴抛物线y=2x2的开口方向是向上;

故选:B.【点睛】本题考查了二次函数图象的开口方向.二次函数y=ax2+bx+c(a≠0)的图象的开口方向:当a<0时,开口方向向下;当a>0时,开口方向向上.2、D【分析】根据正切的定义求出AC,根据正弦的定义求出CF,计算即可.【详解】解:在Rt△ABC中,BC=2,∠A=30°,AC==2,则EF=AC=2,∵∠E=45°,∴FC=EF•sinE=,∴AF=AC﹣FC=2﹣,故选:D.【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.3、D【分析】随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.4、D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.5、B【分析】根据弧长公式,即可求解.【详解】∵,∴,解得:n=75,故选B.【点睛】本题主要考查弧长公式,掌握是解题的关键.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.8、D【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、B【分析】把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.10、C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°=,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.11、B【分析】根据题意画出图形,求出正六边形的边长,再求出∠AOB=60°即可求出的半径.【详解】解:如图,连结OA,OB,∵ABCDEF为正六边形,

∴∠AOB=360°×=60°,

∴△AOB是等边三角形,∵正六边形的周长是12,∴AB=12×=2,∴AO=BO=AB=2,故选B.【点睛】本题考查了正多边形和圆,以及正六边形的性质,根据题意画出图形,作出辅助线求出∠AOB=60°是解答此题的关键.12、C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故选C.考点:切线的性质.二、填空题(每题4分,共24分)13、【分析】延长BC至D,使BD=4个小正方形的边长,连接AD,先证出△ADB是等腰直角三角形,从而求出∠B=45°,即可求出sinB的值.【详解】解:延长BC至D,使BD=4个小正方形的边长,连接AD由图可知:AD=4个小正方形的边长,且∠ADB=90°∴△ADB是等腰直角三角形∴∠B=45°∴sinB=故答案为:.【点睛】此题考查的是求格点中角的正弦值,掌握等腰直角三角形的定义和45°的正弦值是解决此题的关键.14、【分析】设,,则,,代入计算即可求得答案.【详解】∵线段满足,∴设,,则,,∴,故答案为:.【点睛】本题考查了比例线段以及比例的性质,设出适当的未知数可使解题简便.15、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.16、3:1【分析】根据题意利用相似三角形的性质即相似三角形的对应角平分线的比等于相似比即可解决问题.【详解】解:∵∠DAE=∠CAB,∠AED=∠B,∴△ADE∽△ACB,∵GA,FA分别是△ADE,△ABC的角平分线,∴(相似三角形的对应角平分线的比等于相似比),AG:FG=3:2,∴AG:AF=3:1,∴DE:BC=3:1,故答为3:1.【点睛】本题考查相似三角形的判定和性质、解题的关键是灵活运用所学知识解决问题,属于中考常考题型,难度一般.17、﹣1【分析】根据题意得出顶点E坐标,利用平移的规律得出移动后的点的坐标,进而代入反比例函数即可求出k的值.【详解】解:由题意可知抛物线的顶点E坐标为(1,-2),把点E(1,-2)先向左平移3个单位,再向上平移1个单位所得对应点的坐标为(-2,2),∵点(-2,2)在双曲线上,∴k=-2×2=-1.故答案为:-1.【点睛】本题考查二次函数图象与几何变换和二次函数的性质以及待定系数法求反比例函数的解析式,根据题意求得平移后的顶点坐标是解题的关键.18、【分析】先计算判别式的值,再利用求根公式法解方程,然后找出负数根即可.【详解】△=(﹣6)2﹣4×2×(﹣1)=44,x==,所以x1=>1,x2=<1.即方程的负数根为x=.故答案为x=.【点睛】本题考查了公式法解一元二次方程:用求根公式解一元二次方程的方法是公式法.三、解答题(共78分)19、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.

(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.20、(1)答案不唯一,如AB=BC.(2)见解析;(3)BE=2或或或.【解析】整体分析:(1)根据“准菱形”的定义解答,答案不唯一;(2)对角线相等且互相平分的四边形是矩形,矩形的邻边相等时即是正方形;(3)根据平移的性质和“准菱形”的定义,分四种情况画出图形,结合勾股定理求解.解:(1)答案不唯一,如AB=BC.(2)已知:四边形ABCD是“准菱形”,AB=BC,对角线AC,BO交于点O,且AC=BD,OA=OC,OB=OD.求证:四边形ABCD是正方形.证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.∵AC=BD,∴平行四边形ABCD是矩形.∵四边形ABCD是“准菱形”,AB=BC,∴四边形ABCD是正方形.(3)由平移得BE=AD,DE=AB=2,EF=BC=1,DF=AC=.由“准菱形”的定义有四种情况:①如图1,当AD=AB时,BE=AD=AB=2.②如图2,当AD=DF时,BE=AD=DF=.③如图3,当BF=DF=时,延长FE交AB于点H,则FH⊥AB.∵BE平分∠ABC,∴∠ABE=∠ABC=45°.∴∠BEH=∠ABE=45°.∴BE=BH.设EH=BH=x,则FH=x+1,BE=x.∵在Rt△BFH中,BH2+FH2=BF2,∴x2+(x+1)2=()2,解得x1=1,x2=-2(不合题意,舍去),∴BE=x=.④如图4,当BF=AB=2时,与③)同理得:BH2+FH2=BF2.设EH=BH=x,则x2+(x+1)2=22,解得x1=,x2=(不合题意,舍去),∴BE=x=.综上所述,BE=2或或或.21、(1)此抛物线与x轴必有两个不同的交点;(1)(,﹣).【分析】(1)由△=[-(k+1)]1-4×1×(1k-1)=k1-4k+11=(k-1)1+8>0可得答案;

(1)先根据抛物线与直线y=x+k1-1的一个交点在y轴上得出1k-1=k1-1,据此求得k的值,再代入函数解析式,配方成顶点式,从而得出答案.【详解】(1)∵△=[﹣(k+1)]1﹣4×1×(1k﹣1)=k1﹣4k+11=(k﹣1)1+8>0,∴此抛物线与x轴必有两个不同的交点;(1)∵抛物线与直线y=x+k1﹣1的一个交点在y轴上,∴1k﹣1=k1﹣1,解得k=1,则抛物线解析式为y=x1﹣3x=(x﹣)1﹣,所以该二次函数的顶点坐标为(,﹣).【点睛】本题主要考查的是抛物线与x轴的交点,解题的关键是掌握二次函数y=ax1+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax1+bx+c=0根之间的关系及熟练求二次函数的顶点式.22、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.【详解】(1)依题意得:,解得或(不合题意).(2)若每天的利润为元,则,∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.【点睛】本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.23、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解即可;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,先求出S△OAC=6,再根据S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式为,则可得点G的坐标为,由此可得,再根据S△BCD=S△CDG+S△BDG=,可得关于m的方程,解方程即可求得答案;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,由点D的坐标可得点N点纵坐标为±,然后分点N的纵坐标为和点N的纵坐标为两种情况分别求解;以BD为对角线时,有1种情况,此时N1点与N2点重合,根据平行四边形的对边平行且相等可求得BM1=N1D=4,继而求得OM1=8,由此即可求得答案.【详解】(1)抛物线经过点A(-2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(-2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.24、30°【分析】利用垂径定理和圆周角定理证得∠A=∠1=∠ABD,然后根据直角三角形两锐角互余即可求得∠1的度数.【详解】解:∵半径OD与弦AC垂直,∴,∴∠1=∠ABD,∵半径OD与弦AC垂直,∴∠ACB=90°,∴OD∥BC,∴∠1=∠D,∵∠A=∠D,∴∠A=∠1=∠ABD,∵∠A+∠ABC=90°,∴3∠1=90°,∴∠1=30°.【点睛】本题考查了垂径定理和和圆周角定理的推论,解决本题的关键是正确理解题意,熟练掌握垂径定理,能够理清各线段和角的关系.25、(1)Q(0,2)或(3,2)或Q(,-2)或Q(,-2);(2)一次函数,此时直线与直线BC之间的距离为【分析】(1)根据可求得Q点的纵坐标,将Q点的纵坐标代入求得的二次函数解析式中求出Q点的横坐标,即可求得Q点的坐标;(2)根据两直线平行可得直线l的一次项系数,因为直线与抛物线只有一个交点,所以联立它们所形成的方程组有两个相同的解可求得直线l的常数项,即可得到它的解析式.利用等面积法可求得原点距离两直线的距离,距离差即为直线与直线BC之间的距离.【详解】解:(1)对于一次函数,当x=0时,y=2,所以C(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论