版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东省东莞中学数学九年级第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2.在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.3.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.4.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣25.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.10006.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.下列立体图形中,主视图是三角形的是(
).A. B. C. D.9.sin45°的值是()A. B. C. D.10.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.11.下列方程中,为一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..12.二次函数与的图象与x轴有交点,则k的取值范围是A. B.且 C. D.且二、填空题(每题4分,共24分)13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.14.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.15.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)16.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.17.因式分解x3-9x=__________.18.抛物线的顶点坐标是__________________.三、解答题(共78分)19.(8分)如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.20.(8分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.21.(8分)如图1,直线y=kx+1与x轴、y轴分别相交于点A、B,将△AOB绕点A顺时针旋转,使AO落在AB上,得到△ACD,将△ACD沿射线BA平移,当点D到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤2,2<m≤a时,函数的解析式不同)(1)填空:a=,k=;(2)求S关于m的解析式,并写出m的取值范围.22.(10分)解方程:x2+x﹣3=1.23.(10分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.(1)求的值;(2)若,求直线的解析式;(3)若,其它条件不变,直接写出与的位置关系.24.(10分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.25.(12分)现有3个型号相同的杯子,其中A等品2个,B等品1个,从中任意取1个杯子,记下等级后放回,第二次再从中取1个杯子,(1)用恰当的方法列举出两次取出杯子所有可能的结果;(2)求两次取出至少有一次是B等品杯子的概率.26.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.
参考答案一、选择题(每题4分,共48分)1、D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】∵△=62-4×(-1)×(-10)=36-40=-4<0,
∴方程没有实数根.
故选D.【点睛】此题考查一元二次方程的根的判别式,解题关键在于掌握方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、D【分析】画树状图展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率=.故选:D.【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.3、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.4、B【分析】根据题意得根的判别式,即可得出关于的一元一次不等式,解之即可得出结论.【详解】∵,,,由题意可知:,∴a>2,故选:B.【点睛】本题考查了一元二次方程(a≠0)的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.5、B【解析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可.【详解】由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.1附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.1.故选B.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚硬币10次,有5次正面朝上是随机事件;
B、任意一个五边形的外角和是360°是确定事件;
C、从装满白球的袋子里摸出红球是不可能事件;
D、大年初一会下雨是随机事件,
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.9、B【解析】将特殊角的三角函数值代入求解.【详解】解:sin45°=.故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.10、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.11、B【解析】试题解析:A.是一元一次方程,故A错误;
B.是一元二次方程,故B正确;
C.不是整式方程,故C错误;
D.不是一元二次方程,故D错误;
故选B.12、D【解析】利用△=b2-4ac≥1,且二次项系数不等于1求出k的取值范围.【详解】∵二次函数与y=kx2-8x+8的图象与x轴有交点,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故选D.【点睛】此题主要考查了抛物线与x轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键.二、填空题(每题4分,共24分)13、3【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3,故答案为3.14、-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x=2y﹣1得出x﹣2y=﹣1.15、2.3【解析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.【详解】在Rt△ABC中,∴∴即斜坡AB的长为2.3m.故答案为2.3.【点睛】考查解直角三角形的实际应用,熟练掌握锐角三角函数是解题的关键.16、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:,把相关数值代入求正数解即可.【详解】设共有x个飞机场.,解得,(不合题意,舍去),故答案为:1.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.17、x(x+3)(x-3)【分析】先提取公因式x,再利用平方差公式进行分解.【详解】解:x3-9x,=x(x2-9),=x(x+3)(x-3).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.18、(2,0).【分析】直接利用顶点式可知顶点坐标.【详解】顶点坐标是(2,0),故答案为:(2,0).【点睛】主要考查了求抛物线顶点坐标的方法.三、解答题(共78分)19、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点睛】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.20、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三种情况,分别求解即可.【详解】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1).将点B、C的坐标代入抛物线表达式并解得:b,c=﹣1.故抛物线的表达式为:…①,点A(﹣1,0).故答案为:,﹣1,(﹣1,0);(1)①如图1,过点D作y轴的平行线交BC于点H交x轴于点E.设点D(m,m1m﹣1),点H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,则cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②设点M、D的坐标分别为:(s,s﹣1),(m,n),nm1m﹣1;分三种情况讨论:(Ⅰ)当∠CDM=90°时,如图1,过点M作x轴的平行线交过点D与x轴的垂线于点F,交y轴于点E.易证△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故点M(,);(Ⅱ)当∠MDC=90°时,如图3,过D作直线DE⊥y轴于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故点M(,);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣1x﹣1…②,解方程组:得:(舍去)或,故点D(﹣1,0),不在线段BC的下方,舍去.综上所述:点M坐标为:(,)或(,).【点睛】本题是二次函数的综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.21、(1)a=4,k=﹣;(2)S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【分析】(1)先由函数图象变化的特点,得出m=2时的变化是三角形C点与A点重合时,从而得AC的值,进而得点A坐标,易求得点B坐标,从而问题易解得;
(2)当0<m≤2时,平移后的图形在x轴下方部分为图中△AA′N;2<m≤4时,平移后的图形在x轴下方部分的面积S为三角形ANA′的面积减去三角形AQC的面积.【详解】(1)从图2看,m=2时的变化是三角形C点与A点重合时,∴AC=2,又∵OA=AC∴A(2,0),∴k=﹣,由平移性质可知:∠FEM=∠FAM=∠DAC=∠BAO,从图中可知△EFM≌△AFM(AAS)∴AM=EM,∴AM=2,∴a=4;(2)当0<m≤2时,平移后的图形在x轴下方部分为图中△AA′N,则AA′=m,翻折及平移知,∠NAA′=∠NA′A,∴NA=NA′,过点N作NP⊥AA′于点P,则AP=A′P=,由(1)知,OB=1,OA=2,则tan∠OAB=,则tan∠NAA′=,∴NP==,∴S=×AA′×NP=×m×=2<m≤4时,如下图所示,可知CC′=m,AC′=m﹣2,AA′=m,同上可分别求得则AP=A′P=,NP==,C′Q=∴S=S△AA′N﹣S△AQC′=﹣(m﹣2)×=﹣+m﹣1综上,S关于m的解析式为:S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【点睛】本题为动点函数问题,属于一次函数、二次函数的综合问题,难度比较大,能从函数图象中获得信息是关键.22、x1=-1+132,x2=【解析】利用公式法解方程即可.【详解】∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>1,∴x=﹣1∴x1=-1+132,x2=【点睛】本题主要考查解一元二次方程,熟练掌握一元二次方程的几种解法是解答的关键.23、(1);
(2);(3)
BC∥AD.【分析】(1)将点A(-4,1)代入,求的值;(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点即可;(3)代入B(0,1),C(2,0)求出直线BC的解析式,再与直线AB的解析式作比较,得证BC∥AD.【详解】(1)∵反比例函数的图象经过点A(-4,1),∴(2)
如图,∵
∴∴DH=3∵CH=AE=1∴CD=2∴点D的纵坐标为﹣2,把代入得:∴点D的坐标是(2,﹣2)设:,则∴∴直线AD的解析式是:(3)
由题(2)得B(0,1),C(2,0)设:,则解得∴∵∴BC∥AD【点睛】本题考查了反比例函数的应用以及两直线平行的判定,掌握反比例函数的性质以及两直线平行的判定定理是解题的关键.24、(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为;(Ⅲ)两次取出的小球标号的和大于6的概率为.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.
(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.
(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25、(1)见解析;(2).【分析】(1)根据已知条件画出树状图得出所有等情况数即可;(2)找出两次取出至少有一次是B等品杯子的情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画树状图如下:由图可知,共有9中等可能情况数;(2)∵共有9中等可能情况
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产认购专项协议范本
- 2024年成品油销售协议模板
- 2024年高效代理合作招募协议模板
- 2024年幼教岗位聘用协议范本
- 彩钢瓦安装工程协议模板2024年
- 2024年海水产品长期供应协议模板
- 2024年度润滑油分销协议范本
- 文书模板-《硬件设计合同》
- 2024房产居间服务协议模板
- 安全押运员2024年劳动协议格式样本
- 改造美食街建筑改造方案
- 中央银行的支付清算服务
- 财务管理中的财务财务财务人际关系
- 汉语言文学生涯发展展示
- 旅游景区管理中的危险源识别与风险评价实施手册
- 2024年存储服务器技术培训
- 高速铁路客运服务职业生涯规划
- 【课件】读后续写动作链与动作面课件-2024届高三英语作文写作复习
- 《快消拜访八步骤》课件
- 寒潮灾害知识讲座
- 2024年度医院放射科医务人员绩效评价报告课件
评论
0/150
提交评论