版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省温州市实验中学九年级数学第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.322.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A. B.π C.2π D.4π3.点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)4.将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是()A. B.y=C.y= D.y=5.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个6.以原点为中心,把点逆时针旋转,得点,则点坐标是()A. B. C. D.7.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④ B.①③ C.②③④ D.①③④8.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图 B.左视图C.俯视图 D.主视图和俯视图9.设,下列变形正确的是()A. B. C. D.10.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为()A. B.1 C. D.211.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.12.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是___________.14.若方程的一个根,则的值是__________.15.用配方法解一元二次方程,配方后的方程为,则n的值为______.16.一个正n边形的一个外角等于72°,则n的值等于_____.17.半径为6cm的圆内接正四边形的边长是____cm..18.方程x2﹣2x+1=0的根是_____.三、解答题(共78分)19.(8分)如图将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,(1)求证:△AME∽△BEC.(2)若△EMC∽△AME,求AB与BC的数量关系.20.(8分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.21.(8分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.22.(10分)随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加,据统计,该市2017年底拥有家庭轿车64万辆,2019年底家庭轿车的拥有量达到100万辆.(1)求2017年底至2019年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2020年底全市汽车拥有量不超过118万辆,预计2020年报废的汽车数量是2019年底汽车拥有量的8%,求2019年底至2020年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.23.(10分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.24.(10分)如图,在ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边CDE.(1)如图1,若∠CDB=45°,AB=6,求等边CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值.25.(12分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.26.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.2、A【解析】试题解析:连接OD.∵CD⊥AB,故,即可得阴影部分的面积等于扇形OBD的面积,又∴OC=2,∴S扇形OBD即阴影部分的面积为故选A.点睛:垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3、D【解析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解.【详解】解:点A(-2,1)关于原点对称的点A'的坐标是(2,-1).
故选:D.【点睛】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.4、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】解:将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是:.故答案为A.【点睛】本题考查了二次函数图像的平移法则,即掌握“左加右减,上加下减”是解答本题的关键.5、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.6、B【分析】画出图形,利用图象法即可解决问题.【详解】观察图象可知B(-5,4),故选B.【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题7、A【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.8、B【解析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选B.9、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;
B、∵,∴3a=2b,故本选项不符合题意;
C、,故本选项不符合题意;
D、,故本选项符合题意;
故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.10、A【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.【详解】解:设圆锥底面的半径为r,
扇形的弧长为:,∵圆锥的底面周长等于它的侧面展开图的弧长,
∴根据题意得2πr=,解得:r=,故选A.【点睛】本题考查了圆锥的计算,掌握弧长公式、周长公式和圆锥与扇形的对应关系是解题的关键.11、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.12、C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=1.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.二、填空题(每题4分,共24分)13、【分析】由1占圆,2与3占,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【详解】解:占圆,2与3占,把数字为1的扇形可以平分成2部分,转动转盘一次共有4种等可能的结果,分别是1,1,2,3;当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.14、【分析】将m代入方程,再适当变形可得的值.【详解】解:将m代入方程得,即,所以.故答案为:2020.【点睛】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.15、7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.16、1.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.17、6【详解】解:如图:圆的半径是6cm,那么内接正方形的边长为:AB=CB,因为:AB2+CB2=AC2,所以:AB2+CB2=122即AB2+CB2=144解得AB=cm.故答案为:6.18、x1=x2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.三、解答题(共78分)19、(1)详见解析;(2).【分析】(1)根据两角对应相等的两个三角形相似即可证明.(2)利用相似三角形的性质证明∠BCE=∠ECM=∠DCM=30°即可解决问题.【详解】(1)∵矩形ABCD,∴∠A=∠B=∠D=90°,∵将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,∴∠MEC=∠D=90°,∴∠AEM+∠BEC=90°,∵∠AEM+∠AME=90°,∴∠AME=∠EBC,又∵∠A=∠B,∴△AME∽△BEC.(2)∵△EMC∽△AME,∴∠AEM=∠ECM,∵△AME∽△BEC,∴∠AEM=∠BCE,∴∠BCE=∠ECM由折叠可知:△ECM≌△DCM,∴∠DCM=∠ECM,DC=EC,即∠BCE=∠ECM=∠DCM=30°,在Rt△BCE中,,∴,∵DC=EC=AB,∴.【点睛】此题考查矩形的性质,相似三角形的判定及性质,利用30角的余弦值求边长的比,利用三角形相似及折叠得到∠BCE=∠ECM=∠DCM=30°是解题的关键.20、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;(3)由题意过点D作DN⊥AC于N,DM⊥AB于M,继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.【详解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,即∠B=∠C=60°,∵D是BC的中点,∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中点G,连接DG,如下图,∵D为BC的中点,∴DG=AC=BD=CD,∴△BDG是等边三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴结论仍然成立.(3)如下图,过点D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键.21、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.22、(1)2017年底至2019年底该市汽车拥有量的年平均增长率为25%;(2)2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【分析】(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,根据2017年底及2019年底该市汽车拥有量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,根据2020年底全市汽车拥有量不超过118万辆,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,依题意,得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:2017年底至2019年底该市汽车拥有量的年平均增长率为25%.(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,依题意,得:100(1+y)﹣100×8%≤118,解得:y≤0.26=26%.答:2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;
(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.
②难度较大,运用分类讨论思想,可以分三种情况:
(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.
∵抛物线交x轴于A、B两点,交y轴于点C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
当0<t<4时,作DM⊥y轴于M,
则DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴当t=3时,W有最大值,W最大值=1.
探究二:
存在.分三种情况:
①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y轴,OA⊥y轴,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此时又因为∠AOC=∠P1DA=90°,
∴Rt△ADP1∽Rt△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,
此时P1点的坐标为(0,2)
②当∠P2AD=90°时,则∠P2AO=45°,∴△P2AD与△AOC不相似,此时点P2不存在.③当∠AP3D=90°时,以AD为直径作⊙O1,则⊙O1的半径圆心O1到y轴的距离d=4.
∵d>r,
∴⊙O1与y轴相离.
不存在点P3,使∠AP3D=90度.
∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.24、(1);(2)①证明见解析;②.【分析】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延长BC到N,使CN=BC,由“SAS”可证CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证EFD≌BF,可得B=DE,则当CD取最小值时,有最小值,即可求解.【详解】解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴CEN≌CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接B,∵将CFD沿CF翻折得CF,∴CD=C,DF=F,∠CFD=∠CF=90°,又∵EF=BF,∠EFD=∠BF,∴EFD≌BF(SAS),∴B=DE,∴B=CD,∵当B取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,矩形的判定和性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.25、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学真题练习试卷B卷附答案
- 2024年交通运输设备项目资金需求报告代可行性研究报告
- 一年级数学计算题专项练习1000题汇编
- 2024年个人房产抵押贷款协议范本
- 文书模板-《劳务用工合同》
- 2024年度安置性质房产购买协议典范
- 2024老年专家返聘协议详细条款
- 2024届安徽省皖南八校联盟高三4月(二诊)调研测试卷(康德版)数学试题
- 2024年度建筑资产转让协议样例
- 2024精简型牛肉购销协议文本
- 20以内进位加法100题(精心整理6套-可打印A4)
- 陕西师范大学学位英语试题
- 中小学反恐风险评估报告
- 品牌营销策略和品牌策略
- 视力矫正商业计划书
- 医学课件:临床决策分析
- 幼儿园优质公开课:中班音乐韵律《打喷嚏的小老鼠》课件
- 质量管理体系品质保证体系图
- 人教版(新插图)三年级上册数学 第9课时 用乘除两步计算 解决-归总问题 教学课件
- 《现代汉语》考试复习题库及答案
- 13J104《蒸压加气混凝土砌块、板材构造》
评论
0/150
提交评论