2023-2024学年浙江湖州德清县数学九上期末统考试题含解析_第1页
2023-2024学年浙江湖州德清县数学九上期末统考试题含解析_第2页
2023-2024学年浙江湖州德清县数学九上期末统考试题含解析_第3页
2023-2024学年浙江湖州德清县数学九上期末统考试题含解析_第4页
2023-2024学年浙江湖州德清县数学九上期末统考试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江湖州德清县数学九上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知是关于的一个完全平方式,则的值是().A.6 B. C.12 D.2.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.3.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.4.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐 B.甲队身高更整齐C.乙队身高更整齐 D.无法确定甲、乙两队身高谁更整齐5.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m26.如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为()A. B. C. D.7.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.8.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是()A.相离 B.相切C.相交 D.相切、相离或相交9.如图所示,在中,,,,则长为()A. B. C. D.10.如图,数轴上,,,四点中,能表示点的是()A. B. C. D.11.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值312.如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10 B.4 C.15 D.9二、填空题(每题4分,共24分)13.如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为.14.已知抛物线的对称轴是y轴,且经过点(1,3)、(2,6),则该抛物线的解析式为_____.15.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.16.某人沿着有一定坡度的坡面前进了6米,此时他在垂直方向的距离上升了2米,则这个坡面的坡度为_____.17.如图,直线:()与,轴分别交于,两点,以为边在直线的上方作正方形,反比例函数和的图象分别过点和点.若,则的值为______.18.在△ABC中,若AB=5,BC=13,AD是BC边上的高,AD=4,则tanC=_____.三、解答题(共78分)19.(8分)化简求值:,其中.20.(8分)已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.21.(8分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.22.(10分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)23.(10分)如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.24.(10分)如图1,抛物线与轴交于,两点,与轴交于点,已知点,且对称轴为直线.(1)求该抛物线的解析式;(2)点是第四象限内抛物线上的一点,当的面积最大时,求点的坐标;(3)如图2,点是抛物线上的一个动点,过点作轴,垂足为.当时,直接写出点的坐标.25.(12分)如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.26.如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故m=±1.【详解】∵(x±3)2=x2±1x+32,∴是关于的一个完全平方式,则m=±1.故选:B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【点睛】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线3、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键5、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.【点睛】此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.6、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解.【详解】∵绕点逆时针方向旋转得到,∴,,∴.故选:D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键.7、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率.【详解】∵点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,∴连接两点所得的所有线段总数n==15条,∵取到长度为2的线段有:FC、AD、EB共3条∴在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p=.故选:D【点睛】此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键.8、C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结论.【详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半径为3的圆与PB的位置关系是相交,故选:C.【点睛】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.9、B【分析】先根据同角的三角函数值的关系得出,解出AC=5,再根据勾股定理得出AB的值.【详解】在中,,,,即.又AC=5===3.故选B.【点睛】本题考查了三角函数的值,熟练掌握同角的三角函数的关系是解题的关键.10、C【解析】首先判断出的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示点是哪个即可.【详解】解:∵≈1.732,在1.5与2之间,∴数轴上,,,四点中,能表示的点是点P.故选:C【点睛】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.11、A【解析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12、B【解析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故选:B.【点睛】考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据抛物线的对称性知:四边形ODBG的面积应该等于四边形ODEF的面积;由图知△ABG和△BCD的面积和是四边形ODBG与矩形OCBA的面积差,由此得解.【详解】解:由于抛物线的对称轴是y轴,根据抛物线的对称性知:S四边形ODEF=S四边形ODBG=10;∴S△ABG+S△BCD=S四边形ODBG-S四边形OABC=10-6=1.【点睛】本题考查抛物线的对称性,能够根据抛物线的对称性判断出四边形ODEF、四边形ODBG的面积关系是解答此题的关键.14、y=x1+1【分析】根据抛物线的对称轴是y轴,得到b=0,设出适当的表达式,把点(1,3)、(1,6)代入设出的表达式中,求出a、c的值,即可确定出抛物线的表达式.【详解】∵抛物线的对称轴是y轴,∴设此抛物线的表达式是y=ax1+c,把点(1,3)、(1,6)代入得:,解得:a=1,c=1,则此抛物线的表达式是y=x1+1,故答案为:y=x1+1.【点睛】本题考查代定系数法求函数的解析式,根据抛物线的对称轴是y轴,得到b=0,再设抛物线的表达式是y=ax1+c是解题的关键.15、y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.16、【分析】先利用勾股定理求出AC的长,再根据坡度的定义即可得.【详解】由题意得:米,米,,在中,(米),则这个坡面的坡度为,故答案为:.【点睛】本题考查了勾股定理、坡度的定义,掌握理解坡度的定义是解题关键.17、-1【分析】作CH⊥y轴于点H,证明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得点C的坐标为(-b,-2b),点D的坐标为(2b,-3b),代入反比例函数的解析式,即可得出k2的值.【详解】解:如图,作CH⊥y轴于点H,

∵四边形ABCD为正方形,

∴AB=BC,∠AOB=∠BHC=10°,∠ABC=10°

∴∠BAO=10°-∠OBA=∠CBH,

∴△BAO≌△CBH(AAS),

∴OA=BH,OB=CH,

∵直线l:(b<0)与x,y轴分别交于A,B两点,

∴A(3b,0),B(0,b),

∵b<0,

∴BH=-3b,CH=-b,

∴点C的坐标为(-b,-2b),

同理,点D的坐标为(2b,-3b),

∵k1=3,

∴(-b)×(-2b)=3,即2b2=3,

∴k2=2b×(-3b)=-6b2=-1.

故答案为:-1.【点睛】本题考查反比例函数图象上点的坐标的特征,直线与坐标轴的交点,正方形的性质,全等三角形的判定和性质.解题的关键是用b来表示出点C,D的坐标.18、或【分析】先根据勾股定理求出BD的长,再分高AD在△ABC内部和外部两种情况画出图形求出CD的长,然后利用正切的定义求解即可.【详解】解:在直角△ABD中,由勾股定理得:BD==3,若高AD在△ABC内部,如图1,则CD=BC﹣BD=10,∴tanC=;若高AD在△ABC外部,如图2,则CD=BC+BD=16,∴tanC=.故答案为:或.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.三、解答题(共78分)19、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值.【详解】;当时,原式.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.20、(Ⅰ)∠ABC=64°,∠ODC=71°;(Ⅱ)∠ACD=19°.【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线的性质即可得到结论.【详解】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠E=38°,∵OD∥CE,∴∠AOD=∠E=38°,∴∠ACD=AOD=19°.【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.21、点C坐标为(2,2),y=【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【详解】解:过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=×4=2,∴点C坐标为(2,2),∵反比例函数的图象经过点C,∴k=4,∴反比例函数的解析式:y=;【点睛】考查了待定系数法确定反比例函数的解析式的知识,解题的关键是根据题意求得点C的坐标,难度不大.22、解:(1)1.(2)补全图形,如图所示:(3)列表如下:

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,丁)

(乙,丁)

(丙,丁)

﹣﹣﹣

∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为.【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.23、(1)中心;(2)如图,线段FI为此光源下所形成的影子.见解析【分析】(1)根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;(2)如图(见解析),先通过AB、CD的影子确认光源O的位置,再作立柱EF在光源O下的投影即可.【详解】(1)由中心投影的定义得:此光线下形成的投影是:中心投影故答案为:中心;(2)如图,连接GA、HC,并延长相交于点O,则点O就是光源,再连接OE,并延长与地面相交,交点为I,则FI为立柱EF在此光源下所形成的影子.【点睛】本题考查了中心投影的定义,根据已知立柱的影子确认光源的位置是解题关键.24、(1);(2)(3)或或或【分析】(1)由对称性可知抛物线与轴的另一个交点为,将点,坐标代入,联立方程组求解即可得到,即可得到抛物线的解析式.(2)作轴交直线于点,设直线BC:y=kx+b,代入B、C两点坐标求得直线为,设点为,则点为,,表示出S,化简整理可得,根据二次函数的性质得当时,的面积最大,此时点坐标为(3)根据A、B坐标易得AB=4,当PQ=3时满足条件,P点的纵坐标为±3,代入函数解析式求得P点的横坐标,即可得到P点的坐标.【详解】解:(1)由对称性可知抛物线与轴的另一个交点为把点,坐标代入,,解得抛物线的解析式为.(2)如图1,作轴交直线于点设直线BC:y=kx+b,代入B(3,0),C(0,-3)可得解得:∴直线为设点为则点为当时,的面积最大,代入,可得=,此时点坐标为(3)∵A(-1,0),B(3,0)∴AB=4∵∴PQ=3,即P点纵坐标为±3,当y=3时,解得:当y=-3时,解得:x1=0,x2=2,综上,当时,或或或.【点睛】本题为二次函数的综合,涉及知识点有待定系数法、二次函数的最值及分类讨论思想.25、(1)PA的长为,⊙O的半径为;(2)见解析;(3)⊙O的半径为2或或【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB•sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半径为,即PA的长为,⊙O的半径为;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=2,CN=CD=2,∴PQ=DN=2,设QE=x,则PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半径为2或或.【点睛】此题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论