2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题含解析_第1页
2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题含解析_第2页
2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题含解析_第3页
2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题含解析_第4页
2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省自贡市曙光中学数学九年级第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.43.已知一个几何体如图所示,则该几何体的左视图是()A. B. C. D.4.在同一直角坐标系中,一次函数与反比例函数的图象大致是()A. B. C. D.5.如果,那么代数式的值是().A.2 B. C. D.6.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D在半径OA上,点F在半径OB上,点E在弧AB上,则扇形与正方形的面积比是()A.π:8 B.5π:8 C.π:4 D.π:47.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()A. B. C. D.8.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. B. C. D.10.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570二、填空题(每小题3分,共24分)11.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.12.如图,在等边△ABC中,AB=8cm,D为BC中点.将△ABD绕点A.逆时针旋转得到△ACE,则△ADE的周长为_________cm.13.已知2是关于的一元二次方程的一个根,则该方程的另一个根是________.14.如图所示的弧三角形,又叫莱洛三角形,是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画一个正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形.若中间正三角形的边长是10,则这个莱洛三角形的周长是____________.15.已知,关于原点对称,则__________.16.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.17.如图,在中,,,.将绕点逆时针旋转,使点落在边上的处,点落在处,则,两点之间的距离为__________;18.已知二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,则b的值为_____.三、解答题(共66分)19.(10分)在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标:;(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标:.20.(6分)如图,在中,,为边上的中点,交于点,.(1)求的值;(2)若,求的值.21.(6分)如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D.(1)求证:;(2)连接OB,OC,若⊙O的半径为5,BC=8,求的面积.22.(8分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点作轴交反比例函数的图象于点,连接.(1)求反比例函数的表达式.(2)求的面积.23.(8分)如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.

(1)求直线及抛物线的解析式;(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.24.(8分)如图,⊙为的外接圆,,过点的切线与的延长线交于点,交于点,.(1)判断与的位置关系,并说明理由;(2)若,求的长.25.(10分)若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.26.(10分)已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因则点位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限、第二象限、第三象限、第四象限,熟记象限的性质是解题关键.2、C【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.3、B【解析】根据左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知:该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.4、C【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx-k

经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:C.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.5、A【解析】(a-)·=·=·=a+b=2.故选A.6、B【分析】连接OE,设正方形的边长为a.根据等腰直角三角形的性质,得OC=CF=a,在直角三角形OFC中,根据勾股定理列方程,用a表示出r的值,再根据扇形及正方形的面积公式求解.【详解】解:连接OE,设正方形的边长为a,则正方形CDEF的面积是a2,在Rt△OCF中,a2+(2a)2=r2,即r=a,扇形与正方形的面积比=:a2=:a2=5π:1.故选B.【点睛】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.7、C【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故选C.8、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【分析】根据平行线分线段成比例定理与相似三角形的性质,逐项判断即得答案.【详解】解:A、∵DE∥BC,∴,故本选项正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本选项错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误.故选:A.【点睛】本题考查了平行线分线段成比例定理和相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解答的关键.10、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.二、填空题(每小题3分,共24分)11、5≤d≤1.【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可.【详解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非负数,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴对称轴为直线a=0,∴a=0时,最小值=5,a=2时,最大值=22+5=1,∴5≤d≤1.故答案为:5≤d≤1.【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式.12、12【分析】由旋转可知,由全等的性质及等边三角形的性质可知是等边三角形,利用勾股定理求出AD长,可得△ADE的周长.【详解】解:△ABC是等边三角形,D为BC中点,AB=8在中,根据勾股定理得由旋转可知是等边三角形所以△ADE的周长为cm.故答案为:【点睛】本题主要考查了等边三角形的判定和性质,灵活利用等边三角形的性质是解题的关键.13、-1.【解析】设方程的另一个根为,由韦达定理可得:,即,解得.点睛:本题主要考查一元二次方程根与系数的关系,解决本题的关键是要熟练掌握一元二次方程根与系数的关系.14、10π【分析】根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:如图:

∵△ABC是正三角形,

∴∠BAC=60°,

∴的长为:,

∴莱洛三角形的周长=.故答案为:.【点睛】本题考查的是正多边形和圆的知识,理解弧三角形的概念、掌握正多边形的中心角的求法是解题的关键.15、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可.【详解】解:∵,关于原点对称∴,解得,∴,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键.16、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.17、【分析】利用勾股定理算出AB的长,再算出BE的长,再利用勾股定理算出BD即可.【详解】∵AC=4,BC=3,∠C=90°,∴AB=5,∴EB=5-4=1,∴BD=.故答案为:.【点睛】本题考查勾股定理的应用,关键在于通过旋转找到等量关系.18、【分析】根据二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b的值.【详解】∵二次函数y=x2﹣bx=(x)2,当2≤x≤5时,函数y有最小值﹣1,∴当5时,x=5时取得最小值,52﹣5b=﹣1,得:b(舍去),当25时,x时取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),当2时,x=2时取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案为:.【点睛】本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、(1)详见解析;(2)详见解析,A1(﹣3,3);(3)详见解析,A2(6,6).【解析】(1)根据A、B、C三点坐标画出图形即可;(2)作出A、B、C关于轴的对称点A1、B1、C1即可;(3)延长OC到C2,使得OC2=2OC,同法作出A2,B2即可;【详解】(1)△ABC如图所示;(2)△A1B1C1如图所示;A1(﹣3,3),(3)△A2B2C2如图所示;A2(6,6).故答案为(﹣3,3),(6,6).【点睛】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)(2)【分析】(1)根据题意证出∠B=∠ADE,进而设出DE和AD的值,再结合勾股定理求出AE的值即可得出答案;(2)根据斜中定理求出AD和AB的值,结合∠B和∠AED的sin值求出AC和AE的值,相减即可得出答案.【详解】(1)∵,∴.又∵,∴.设,则.在中,,则.(2)∵为斜边上的中点,∴,∴.则,,∴.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.21、(1)见解析;(2)12【分析】(1)由点E是的中点根据圆周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可证得△BDE∽△ABE,然后由相似三角形的对应边成比例,证得结论.(2)过点O作OF⊥BC于点F,根据垂径定理得出BF=CF=4,再根据勾股定理得出OF的长,从而求出的面积【详解】(1)证明:∵点E是弧BC的中点∴∠BAE=∠CBE=∠DBE又∵∠E=∠E∴△AEB∽△BED∴∴(2)过点O作OF⊥BC于点F,则BF=CF=4在中,∴【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1);(2)【分析】(1)首先将点B的横坐标代入一次函数,得出其坐标,然后代入反比例函数,即可得出解析式;(2)首先求出点A的坐标,然后分别求出AC、BD,即可求得面积.【详解】一次函数的图象过点,且点的横坐标为,,点的坐标为.点在反比例函数的图象上,,反比例函数的表达式为;一次函数的图象与轴交于点,当时,,点的坐标为,轴,点的纵坐标与点的纵坐标相同,是2,点在反比例函数的图象上,当时,,解得,过作于,则,【点睛】此题主要考查一次函数与反比例函数综合应用,熟练掌握,即可解题.23、(1)直线的解析式为,二次函数的解析式是;(2);(3)存在,或【分析】(1)先将点A代入求出OA表达式,再设出二次函数的交点式,将点A代入,求出二次函数表达式;(2)根据题意得出当为等腰三角形时,只有OC=PC,设点D的横坐标为x,表示出点P坐标,从而得出PC的长,再根据OC和OD的关系,列出方程解得;(3)设点P的坐标为,根据条件的触点Q坐标为,再表示出的高,从而表示出的面积,令其等于,解得即可求出点P坐标.【详解】解:(1)设直线的解析式为,把点坐标代入得:,直线的解析式为;再设,把点坐标代入得:,函数的解析式为,∴直线的解析式为,二次函数的解析式是.(2)设的横坐标为,则的坐标为,∵为直线上方抛物线上的一个动点,∴.此时仅有,,∴,解得,∴;(3)函数的解析式为,∴对称轴为,顶点,设,则,到直线的距离为,要使的面积为,则,即,解得:或,∴或.【点睛】本题考查了待定系数法求解析式,二次函数图象及性质的运用,点坐标的关系,综合性较强,解题的关键是利用条件表示出点坐标,得出方程解之.24、(1)OE∥BC.理由见解析;(2)【分析】(1)连接OC,根据已知条件可推出,进一步得出结论得以证明;(2)根据(1)的结论可得出∠E=∠BCD,对应的正切值相等,可得出CE的值,进一步计算出OE的值,在Rt△AFO中,设OF=3x,则AF=4x,解出x的值,继而得出OF的值,从而可得出答案.【详解】解:(1)OE∥BC.理由如下:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.∴∠EFC=∠ACB=90,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tanE=tan∠BCD=,∴.∴OE2=OC2+CE2=62+82,∴OE=10又由(1)知∠EFC=90,∴∠AFO=90.在Rt△AFO中,∵tanA=tanE=,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论