版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年安徽省滁州来安县数学九年级第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.2.在Rt△ABC中,∠C=90°,BC=4,sinA=,则AC=()A.3 B.4 C.5 D.63.二次函数图象的顶点坐标是()A. B. C. D.4.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(
)A.8S B.9S C.10S D.11S5.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零6.在中,,,则()A.60° B.90° C.120° D.135°7.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.8.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)9.如图所示,图中既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数 B.方差 C.中位数 D.极差二、填空题(每小题3分,共24分)11.计算的结果是_______.12.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.13.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.14.如图,中,点在边上.若,,,则的长为______.15.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.16.如图,由10个完全相同的正三角形构成的网格图中,如图所示,则=______.17.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.18.在平面直角坐标系中,已知,,,若线段与互相平分,则点的坐标为______.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.20.(6分)已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.21.(6分)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5,当k为何值时,△ABC是等腰三角形.22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.23.(8分)已知关于x的一元二次方程:2x2+6x﹣a=1.(1)当a=5时,解方程;(2)若2x2+6x﹣a=1的一个解是x=1,求a;(3)若2x2+6x﹣a=1无实数解,试确定a的取值范围.24.(8分)如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.25.(10分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.26.(10分)如图,中,,,,解这个直角三角形.
参考答案一、选择题(每小题3分,共30分)1、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【分析】先根据正弦的定义得到sinA==,则可计算出AB=5,然后利用勾股定理计算AC的长.【详解】如图,在Rt△ACB中,∵sinA=,∴,∴AB=5,∴AC==1.故选:A.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.3、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).4、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5、D【分析】根据定义进行判断.【详解】解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件,由必然事件和随机事件的定义可知,选项A,B,C为随机事件,选项D是必然事件,故选D.【点睛】本题考查必然事件和随机事件的定义.6、C【分析】首先根据特殊角的三角函数值求出∠C,∠A的度数,然后根据三角形的内角和公式求出∠B的大小.【详解】∵,,∴∠C=30°,∠A=30°,∴∠B=180°﹣30°﹣30°=120°.故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及三角形的内角和公式.7、D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.8、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.9、C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.10、C【解析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.12、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.13、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)
故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.14、【分析】根据相似三角形对应边成比例即可求得答案.【详解】,,,,,解得:故答案为:【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.15、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、.【解析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【详解】给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴,∴cos(α+β)=.故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.17、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.18、【分析】根据题意画出图形,利用平行四边形的性质得出D点坐标.【详解】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),故答案为:(5,3).【点睛】此题考查了平行四边形的性质,图形与坐标,正确画出图形是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.20、(3)-3;(2)k>2,见解析;(3)a>3或a<﹣3【分析】(3)把a=2,m=﹣5代入抛物线解析式即可求抛物线的最值;(2)把a=2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于2和a小于2两种情况讨论即可得a的取值范围.【详解】解:(3)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣3所以抛物线的最小值为﹣3.(2)当a=2时,y=x2﹣4x+m因为该抛物线与坐标轴有两个交点,①该抛物线与x轴、y轴分别有一个交点∴△=36-4m=2,∴m=4,∴y=x2﹣4x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k>2;②该抛物线与x轴、y轴交于原点,即m=2,∴y=x2﹣4x∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+k此时△<2,即36﹣4k<2解得k>4;综上,k>2时,函数沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点;(3)当m=2时,y=x2﹣2ax抛物线开口向上,与x轴交点坐标为(2,2)(2a,2),a≠2.直线l分别与直线y=x﹣(a﹣3)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,①当a>2时,如图3所示,此时,当x=2时,2﹣a+3<2,解得a>3;②当a<2时,如图2所示,此时,当x=2a时,2a﹣a+3<2,解得a<﹣3.综上:a>3或a<﹣3.【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.21、(1)方程有两个不相等的实数根;(2)3或1.【分析】(1)利用一元二次方程根的判别式判断即可;(2)用k表示出方程的两个根,分AB=BC和AC=BC两种情况,分别求出k值即可.【详解】(1)∵方程x2﹣(2k+3)x+k2+3k+2=0,∴△=b2﹣1ac=(2k+3)2﹣1(k2+3k+2)=1k2+12k+9﹣1k2﹣12k﹣8=1>0,∴方程有两个不相等的实数根;(2)x2﹣(2k+3)x+k2+3k+2=0,x1=k+1,x2=k+2,当AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(i)当AC=BC=5时,k+2=5,即k=3;(ii)当AB=BC=5时,k+1=5,即k=1.故当k为3或1时,△ABC是等腰三角形.【点睛】本题考查了一元二次方程的根的判别式与根的关系,△>0时,方程有两个不相等的实数根;△=0时,方程有两个相等的实数根;△<0时,方程没有实数根.熟练掌握一元二次方程的根的判别式与根的关系是解题关键.22、(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.23、(1),;(2)a=8;(3)【分析】(1)将a的值代入,再利用公式法求解可得;(2)将x=1代入方程,再求a即可;(3)由方程无实数根得出△=62﹣4×2(﹣a)<1,解之可得.【详解】解:(1)当a=5时,方程为2x2+6x﹣5=1,∴,∴,解得:,;(2)∵x=1是方程2x2+6x﹣a=1的一个解,∴2×12+6×1﹣a=1,∴a=8;(3)∵2x2+6x﹣a=1无实数解,∴△=62﹣4×2(﹣a)=36+8a<1,解得:.【点睛】本题主要考查一元二次方程的解、解一元二次方程以及一元二次方程根的判别式的意义,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2−4ac有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1时,方程无实数根.24、(1)见解析;(2)AC=1【分析】(1)要证AB切线,连接半径OD,证∠ADO=90°即可,由∠ACB=90°,由OD=OE,DE∥OA,可得∠AOD=∠AOC,证△AOD≌△AOC(SAS)即可,(2)AB是⊙O的切线,∠BDO=90°,由勾股定理求BE,BC=BE+EC可求,利用AD,AC是⊙O的切线长,设AD=AC=x,在Rt△ABC中,AB2=AC2+BC2构造方程求AC即可.【详解】(1)证明:连接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:∵AB是⊙O的切线,∴∠BDO=90°,∴BD2+OD2=OB2,∴42+32=(3+BE)2,∴BE=2,∴BC=BE+EC=8,∵AD,AC是⊙O的切线,∴AD=AC,设AD=AC=x,在Rt△ABC中,AB2=AC2+BC2,∴(4+x)2=x2+82,解得:x=1,∴AC=1.【点睛】本题考查AB切线与切线长问题,掌握连接半径OD,证∠ADO=90°是证切线常用方法,利用△AOD≌△AOC(SAS)来实现目标,先在Rt△BOD,用勾股定理求BE,再利用AD,AC是⊙O的切线长,在Rt△ABC中,用勾股定理构造方程求AC是解题关键.25、详见解析.【分析】三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,EM,EN分别AB,CD于F,G使得∠BEM=∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论