![2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题含解析_第1页](http://file4.renrendoc.com/view10/M01/3A/00/wKhkGWWU3GSAcMEXAAIzbrCB8mo911.jpg)
![2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题含解析_第2页](http://file4.renrendoc.com/view10/M01/3A/00/wKhkGWWU3GSAcMEXAAIzbrCB8mo9112.jpg)
![2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题含解析_第3页](http://file4.renrendoc.com/view10/M01/3A/00/wKhkGWWU3GSAcMEXAAIzbrCB8mo9113.jpg)
![2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题含解析_第4页](http://file4.renrendoc.com/view10/M01/3A/00/wKhkGWWU3GSAcMEXAAIzbrCB8mo9114.jpg)
![2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题含解析_第5页](http://file4.renrendoc.com/view10/M01/3A/00/wKhkGWWU3GSAcMEXAAIzbrCB8mo9115.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年重庆市渝北区数学九年级第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.2.已知分式的值为0,则的值是().A. B. C. D.3.如图,,是四边形的对角线,点,分别是,的中点,点,分别是,的中点,连接,,,,要使四边形为正方形,则需添加的条件是()A., B.,C., D.,4.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于25.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.46.已知二次函数y=x2+2x-m与x轴没有交点,则m的取值范围是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠07.下列函数中,的值随着逐渐增大而减小的是()A. B. C. D.8.参加一次聚会的每两人都握了一次手,所有人共握手10
次,若共有
x
人参加聚会,则根据题意,可列方程()A. B. C. D.9.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.10.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE11.已知是方程的一个根,则方程的另一个根为()A.-2 B.2 C.-3 D.312.把抛物线先向左平移1个单位,再向上平移个单位后,得抛物线,则的值是()A.-2 B.2 C.8 D.14二、填空题(每题4分,共24分)13.已知实数满足,且,,则抛物线图象上的一点关于抛物线对称轴对称的点为__________.14.已知:,且y≠4,那么=______.15.中山市田心森林公园位于五桂山主峰脚下,占地3400多亩,约合2289000平方米,用科学记数法表示2289000为__________.16.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.17.在相同时刻,物高与影长成正比.在某一晴天的某一时刻,某同学测得他自己的影长是2.4m,学校旗杆的影长为13.5m,已知该同学的身高是1.6m,则学校旗杆的高度是_____.18.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.三、解答题(共78分)19.(8分)2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)20.(8分)已知关于x的方程ax2+(3﹣2a)x+a﹣3=1.(1)求证:无论a为何实数,方程总有实数根.(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=时,求出a的值.21.(8分)如图,是两棵树分别在同一时刻、同一路灯下的影子.(1)请画出路灯灯泡的位置(用字母表示)(2)在图中画出路灯灯杆(用线段表示);(3)若左边树的高度是4米,影长是3米,树根离灯杆底的距离是1米,求灯杆的高度.22.(10分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.23.(10分)为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,请根据以上观测数据求观光塔的高.24.(10分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表:班级中位数(分)众数(分)九(1)85九(2)100(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?25.(12分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.26.已知二次函数y=ax2+bx+4经过点(2,0)和(﹣2,12).(1)求该二次函数解析式;(2)写出它的图象的开口方向、顶点坐标、对称轴;(3)画出函数的大致图象.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.2、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.3、A【分析】证出、、、分别是、、、的中位线,得出,,,,证出四边形为平行四边形,当时,,得出平行四边形是菱形;当时,,即,即可得出菱形是正方形.【详解】点,分别是,的中点,点,分别是,的中点,、、、分别是、、、的中位线,,,,,四边形为平行四边形,当时,,平行四边形是菱形;当时,,即,菱形是正方形;故选:.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定以及三角形中位线定理;熟练掌握三角形中位线定理是解题的关键.4、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.5、D【解析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.6、A【分析】函数y=x2+2x-m的图象与x轴没有交点,用根的判别式:△<0,即可求解.【详解】令y=0,即:x2+2x-m=0,△=b2−4ac=4+4m<0,即:m<-1,故选:A.【点睛】本题考查的是二次函数图象与x轴的交点,此类题目均是利用△=b2−4ac和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.7、D【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【详解】A选项函数的图象是随着增大而增大,故本选项错误;B选项函数的对称轴为,当时随增大而减小故本选项错误;C选项函数,当或,随着增大而增大故本选项错误;D选项函数的图象是随着增大而减小,故本选项正确;故选D.【点睛】本题考查了三种函数的性质,了解它们的性质是解答本题的关键,难度不大.8、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.9、B【分析】把点(1,3)代入中即可求得k值.【详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.10、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.11、B【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则
1•m=1,解得m=1.
故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x1=-,x1•x1=.要求熟练运用此公式解题.12、B【分析】将改写成顶点式,然后按照题意将进行平移,写出其平移后的解析式,从而求解.【详解】解:由题意可知抛物线先向左平移1个单位,再向上平移个单位∴∴n=2故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便.二、填空题(每题4分,共24分)13、【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.14、【分析】由分式的性质和等比性质,即可得到答案.【详解】解:∵,∴,由等比性质,得:;故答案为:.【点睛】本题考查了比例的性质,以及分式的性质,解题的关键是熟练掌握等比性质.15、【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:将2289000用科学记数法表示为:.故答案为:.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.16、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17、9米【分析】由题意根据物高与影长成比例即旗杆的高度:13.5=1.6:2.4,进行分析即可得出学校旗杆的高度.【详解】解:∵物高与影长成比例,∴旗杆的高度:13.5=1.6:2.4,∴旗杆的高度==9米.故答案为:9米.【点睛】本题考查相似三角形的应用,解题的关键是理解题意,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程并通过解方程求出旗杆的高度.18、【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1可得:抛物线与x轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax2+bx+c=0的根为故答案为:【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x轴的交点坐标是本题的解题关键.三、解答题(共78分)19、(1)随机选取一位作为引导员,选到女生的概率为;(2)甲、乙两位志愿者选择同一个岗位的概率为.【分析】(1)直接利用概率公式求出即可;
(2)用列表法表示所有可能出现的情况,共9中可能的结果数,选择同一岗位的有三种,可求出概率.【详解】(1)5名志愿者中有2名女生,因此随机选取一位作为引导员,选到女生的概率为,即:P=,答:随机选取一位作为引导员,选到女生的概率为.(2)用列表法表示所有可能出现的情况:∴.答:甲、乙两位志愿者选择同一个岗位的概率为.【点睛】本题考查了随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.20、(1)见解析;(2)﹣2或2【分析】(1)证明一元二次方程根的判别式恒大于等于1,即可解答;(2)根据一元二次方程根与系数的关系,以及,由|x1﹣x2|=即可求得a的值.【详解】(1)证明:∵关于x的方程ax2+(3﹣2a)x+a﹣3=1中,△=(3﹣2a)2﹣4a(a﹣3)=9>1,∴无论a为何实数,方程总有实数根.(2)解:如果方程的两个实数根x1,x2,则,∵,∴,解得a=±2.故a的值是﹣2或2.【点睛】本本题考查了一元二次方程的判别式和根与系数的关系,解决本题的关键是正确理解题意,熟练掌握一元二次方程的判别式和根与系数之间的关系.21、(1)见解析;(2)见解析;(3)灯杆的高度是米【分析】(1)直接利用中心投影的性质得出O点位置;(2)利用O点位置得出OC的位置;(3)直接利用相似三角形的性质得出灯杆的高度.【详解】解:(1)如图所示:O即为所求;(2)如图所示:CO即为所求;(3)由题意可得:△EAB∽△EOC,则,∵EB=3m,BC=1m,AB=4m,∴,解得:CO=,答:灯杆的高度是
米.【点睛】此题主要考查了相似三角形的应用,正确得出O点位置是解题关键.22、∠CAE=20°.【分析】根据等边对等角求出∠BAD,从而求出∠ADC,在等腰三角形ADC中,由三线合一求出∠CAE.【详解】∵BD=AD,∴∠BAD=∠B=35°,∴∠ADE=∠BAD+∠B=70°,∵AD=AC,∴∠C=∠ADE=70°,∵AD=AC,AE平分DC,∴AE⊥EC,(三线合一).∴∠EAC=90°-∠C=20°.【点睛】本题的解题关键是掌握等边对等角和三线合一.23、135【分析】根据“爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°”可以求出AD的长,然后根据“在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°”求出CD的长即可.【详解】∵爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,∴∠ADB=30°,在Rt△ABD中,AD=,∴AD=45m,∵在一楼房的底端A点处观测观光塔顶端C处的仰角是60°,∴在Rt△ACD中,CD=AD•tan60°=45×=135m.故观光塔高度为135m.【点睛】本题主要考查了三角函数的应用,熟练掌握相关概念是解题关键.24、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.【解析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)根据平均数计算即可;
(3)在平均数相同的情况下,中位数高的成绩较好;
(4)先根据方差公式分别计算两个班复赛成绩的方差,再根据方差的意义判断即可.【详解】解:(1)填表:班级中位数(分)众数(分)九(1)8585九(2)80100(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三方验收合同范本
- 通乡公路施工合同范本
- 工程结算审计合同范本
- 2024-2025学年七年级生物下册第三章人体的呼吸第一节呼吸道对空气的处理教案新版新人教版
- 2024-2025学年高中英语Module2FantasyLiterature单元知识滚动练含解析外研版选修6
- 社交技能在孩子价值观形成中的重要性
- 现代人的健康管理科学饮食对抗亚健康
- 现代办公家具的工业设计技术交底探讨
- 社区居民楼宇消防设施提升改造工程
- 社交网络中的广告信息传播策略研究
- 2025年上半年山东人才发展集团限公司社会招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年上海民航职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2024年山东理工职业学院高职单招语文历年参考题库含答案解析
- 《生命与宗教》课件
- 2024年河南省《辅警招聘考试必刷500题》考试题库含答案【综合卷】
- 三叉神经痛的护理问题
- 2025北京平谷初三(上)期末数学真题试卷(含答案解析)
- 2024-2025学年成都市金牛区九年级上期末(一诊)英语试题(含答案)
- 2025年高压电工资格考试国家总局模拟题库及答案(共四套)
- 2024年01月河北2024沧州银行总行科技开发部招考笔试历年参考题库附带答案详解
- 自动化电气元器件介绍与使用
评论
0/150
提交评论