版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省菏泽市牡丹区王浩屯中学数学九年级第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定2.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣14.如果,、分别对应、,且,那么下列等式一定成立的是()A. B.的面积:的面积C.的度数:的度数 D.的周长:的周长5.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A. B. C. D.6.﹣的绝对值为()A.﹣2 B.﹣ C. D.17.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是()A.30° B.45° C.60° D.90°8.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣29.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥210.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是()A. B.6 C.8 D.11.已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.412.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,CE,若∠CBD=32°,则∠BEC的大小为()A.64° B.120° C.122° D.128°二、填空题(每题4分,共24分)13.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.14.已知,则=_____.15.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.16.若二次函数的图象与x轴只有一个公共点,则实数n=______.17.二次函数y=2x2﹣5kx﹣3的图象经过点M(﹣2,10),则k=_____.18.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).三、解答题(共78分)19.(8分)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?20.(8分)若关于x的方程有两个相等的实数根(1)求b的值;(2)当b取正数时,求此时方程的根,21.(8分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.23.(10分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A(5,0),B(2,6),点D为AB上一点,且,双曲线y1=(k1>0)在第一象限的图象经过点D,交BC于点E.(1)求双曲线的解析式;(2)一次函数y2=k2x+b经过D、E两点,结合图象,写出不等式<k2x+b的解集.24.(10分).在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.25.(12分)已知,求代数式的值.26.已知二次函数.用配方法将其化为的形式;在所给的平面直角坐标系xOy中,画出它的图象.
参考答案一、选择题(每题4分,共48分)1、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【详解】由二次函数,
知
∴.∴抛物线与轴有二个公共点.
故选:A.【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.2、B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.3、D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.4、D【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.5、A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长.【详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=,∴EF=,故选:A.【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.6、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解:﹣的绝对值为|-|=-(﹣)=.点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.7、C【分析】根据旋转的性质得出AO=A′O,得出等边三角形AOA′,根据等边三角形的性质推出即可.【详解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB绕点O顺时针旋转α角度得到的,点A′在AB上,
∴AO=A′O,∴△AOA′是等边三角形,
∴∠AOA′=60°,
即旋转角α的度数是60°,
故选:C【点睛】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA′是等边三角形,题目比较典型,难度不大.8、A【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.9、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.10、D【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.【详解】解:如图,连接OA,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故选:D.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.11、C【分析】根据图象可直接判断a、c的符号,再结合对称轴的位置可判断b的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:,,由于对称轴,∴,∴,故①正确;②∵抛物线过,∴时,,故②正确;③顶点坐标为:.由图象可知:,∵,∴,即,故③错误;④由图象可知:,,∴,∵,∴,∴,故④正确;故选:C.【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、灵活运用数形结合的思想方法是解题的关键.12、C【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在⊙O中,∵∠CBD=32°,
∴∠CAD=32°,
∵点E是△ABC的内心,
∴∠BAC=64°,
∴∠EBC+∠ECB=(180°-64°)÷2=58°,
∴∠BEC=180°-58°=122°.
故选:C.【点睛】本题考查了三角形的内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.二、填空题(每题4分,共24分)13、90【分析】先根据等边三角形的的性质和三角形的外角性质求出∠ACP,进而求得可得∠BCP,最后根据圆周角定理∠BOP=2∠BCP=90°.【详解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14、【解析】根据题意,设x=5k,y=3k,代入即可求得的值.【详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【点睛】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.15、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.16、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.17、.【分析】点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3即可求出k的值.【详解】把点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案为:.【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式.18、<【解析】由二次函数图象的开口向下,可得.【详解】解:∵二次函数的图象开口向下,∴.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;还可以决定开口大小,越大开口就越小.三、解答题(共78分)19、(1);(2)该公可若想获得10万元的年利润,此设备的销售单价应是3万元.【解析】分析:(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1)台,根据总利润=单台利润×销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论.详解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,53)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1)台,根据题意得:(x﹣30)(﹣10x+1)=10,整理,得:x2﹣130x+4000=0,解得:x1=3,x2=2.∵此设备的销售单价不得高于70万元,∴x=3.答:该设备的销售单价应是3万元/台.点睛:本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.20、(1)b=2或b=;(2)x1=x2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b)=0,∴解得:b=2或b=.(2)当b=2时,此时x2-4x+4=0,∴,∴x1=x2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.21、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为20时最大,最大值是2400元【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到,根据二次函数的性质得到当时,随的增大而增大,于是得到结论.【详解】(1)根据题意得,;(2)根据题意得,,解得:,,∵每件利润不能超过60元,∴,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,,∵,∴当时,随的增大而增大,∴当时,,答:当为20时最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.22、(1)见解析;(2)相切,理由见解析【分析】(1)连接OC,由D为的中点,得到,根据圆周角定理即可得到结论;
(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,从而得到结论.【详解】(1)证明:连接OC,∵D为的中点,∴,∴∠BOD=∠BOC,由圆周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点睛】本题考查了直线与圆的位置关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.23、(1);(2)<x<1.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=1,得到D点坐标为(1,2),然后把D点坐标代入反比例函数表达式中,求出k的值即可得到反比例函数解析式;(2)观察函数图象即可求解.【详解】解:(1)过点B作BM⊥x轴于M,过点D作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴,即,解得:DN=2,AN=1,∴ON=OA﹣AN=1,∴D点坐标为(1,2),把D(1,2)代入y1=得,k=2×1=8,∴反比例函数解析式为;(2)由(1)知,点D的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程债券发行合同3篇
- 2024年电机与变压器教案:培养未来工程师的新思路
- 如何通过项目管理实现年度目标计划
- 走进2024:游山西村教学策略
- 二下期中家长会课件
- 海水的性质【知识精研】高三地理一轮复习
- 房屋买卖合同经纪版成功要素
- 电力设施吊装劳务外包
- 基坑开挖施工分包合同
- 工程分包协议增量版
- 2024年度品牌授权代理终止协议书
- 班组长安全培训资料
- Unit1 lesson 1 Me and my body说课稿2024-2025学年冀教版(2024)初中英语七年级上册
- 2024-2030年中国冶炼钛产业未来发展趋势及投资策略分析报告
- 作文写清楚一件事的起因经过和结果公开课获奖课件省赛课一等奖课件
- 线上主播管理劳动合同(3篇)
- 《中秋节》完整教学课件
- 2024年广东深圳市龙华区招聘非编人员98人管理单位遴选500模拟题附带答案详解
- 质子交换膜燃料电池汽车用氢气中颗粒物的测定-称重法-编制说明
- 2024-2030年青海省旅游行业市场发展分析及发展趋势与投资前景研究报告
- 恢复驾驶资格科目一汽车类考试题库被吊销补考用450题
评论
0/150
提交评论