医学统计学方法_第1页
医学统计学方法_第2页
医学统计学方法_第3页
医学统计学方法_第4页
医学统计学方法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE5医师资格考试蓝宝书-预防医学医学统计学方法第一节基本概念和基本步骤(非常重要)一、统计工作的基本步骤设计(最关键、决定成败)、搜集资料、整理资料、分析资料。总体:根据研究目的决定的同质研究对象的全体,确切地说,是性质相同的所有观察单位某一变量值的集合。总体的指标为参数。实际工作中,经常是从总体中随机抽取一定数量的个体,作为样本,用样本信息来推断总体特征。样本的指标为统计量。由于总体中存在个体变异,抽样研究中所抽取的样本,只包含总体中一部分个体,这种由抽样引起的差异称为抽样误差。抽样误差愈小,用样本推断总体的精确度愈高;反之,其精确度愈低。某事件发生的可能性大小称为概率,用P表示,在0~1之间,0和1为肯定不发生和肯定发生,介于之间为偶然事件,<0.05或0.01为小概率事件。二、变量的分类变量:观察单位的特征,分数值变量和分类变量。第二节数值变量数据的统计描述(重要考点)一、描述计量资料的集中趋势的指标有1.均数均数是算术均数的简称,适用于正态或近似正态分布。2.几何均数适用于等比资料,尤其是对数正态分布的计量资料。对数正态分布即原始数据呈偏态分布,经对数变换后(用原始数据的对数值lgX代替X)服从正态分布,观察值不能为0,同时有正和负。3.中位数一组按大小顺序排列的观察值中位次居中的数值。可用于描述任何分布,特别是偏态分布资料的集中位置,以及分布不明或分布末端无确定数据资料的中心位置。不能求均数和几何均数,但可求中位数。百分位数是个界值,将全部观察值分为两部分,有X%比小,剩下的比大,可用于计算正常值范围。二、描述计量资料的离散趋势的指标1.全距和四分位数间距。2.方差和标准差最为常用,适于正态分布,既考虑了离均差(观察值和总体均数之差),又考虑了观察值个数,方差使原来的单位变成了平方,所以开方为标准差。均为数值越小,观察值的变异度越小。3.变异系数多组间单位不同或均数相差较大的情况。变异系数计算公式为:CV=s/×100%,公式中s为样本标准差,为样本均数。三、标准差的应用表示观察值的变异程度(或离散程度)。在两组(或几组)资料均数相近、度量单位相同的条件下,标准差大,表示观察值的变异度大,即各观察值离均数较远,均数的代表性较差;反之,表示各观察值多集中在均数周围,均数的代表性较好。(常考!)四、医学参考值的计算方法,单双侧问题,医学为95%医学参考值是指正常人体或动物体的各种生理常数,由于存在变异,各种数据不仅因人而异,而且同一个人还会随机体内外环境的改变而改变,因而需要确定其波动的范围,即正常值范围。医学参考值的计算公式:①正态分布资料95%医学参考值:±1.96s(双侧);+1.645s或-1.645s(单侧),s为标准差。②百分位数法P2.5和P97.5(双侧);P5或P95(单侧)。第三节数值变量数据的统计推断(重要考点)一、标准误,标准误与标准差和样本含量的关系标准差和标准误的区别。样本标准误等于样本标准差除以根号下样本含量。标准误与标准差成正比;与样本含量的平方根成反比。因此。为减少抽样误差,应尽可能保证足够大的样本含量。样本标准差与样本标准误是既有联系又有区别的两个统计量,二者的联系是公式:二者的区别在于:样本标准差是反映样本中各观测值X1,X2,……,Xn变异程度大小的一个指标,它的大小说明了对该样本代表性的强弱。样本标准误是样本平均数1,2,……的标准差,它是抽样误差的估计值,其大小说明了样本间变异程度的大小及精确性的高低。(掌握!)二、t分布和标准正态u分布关系均以0为中心左右两侧完全对称的分布,只是t分布曲线顶端较u分布低,两端翘。(v逐渐增大,t分布逐渐逼近u分布)。正态分布的特点:①以均数为中心左右两侧完全对称分布;②两个参数,均数u(位置参数)和s(变异参数);③对称均数的两侧面积相等。三、总体均数的估计样本统计量推算总体均数有两个重要方面:区间估计和假设检验。样本均数估计总体均数称点估计。总体均数区间估计(可信区间)的概念:按一定的可信度估计未知总体均数所在范围。其统计上习惯用95%(或99%)可信区间表示总体均数μ有95%(或99%)的可能在某一范围。可信区间的两个要素,一为准确度,反映在可信度1-α的大小,即区间包含总体均数的概率大小,当然愈接近1愈好;二是精度,反映在区间的长度,当然长度愈小愈好。在样本例数确定的情况下,二者是矛盾的,需要兼顾。总体均数可信区间的计算方法:1.当n小按t分布的原理用式计算可信区间为:±tα/2,vS2.当n足够大因n足够大时,t分布逼近μ分布,按正态分布原理。用式估计可信区间为:±μα/2S可信区间与医学参考值范围的区别:二者的意义和算法不同。四、假设检验的步骤1.建立假设:H0(无效,两样本代表的总体均数相同),H1(备择,两样本来自不同总体),当拒绝H0就接受H1,不拒绝就不接受H1。2.确定显著性水平:区分大概率和小概率事件的标准,通常取α=0.05。3.计算统计量:根据资料类型和分析目的选择适当的公式计算。4.确定概率P值:将计算得到的t值或u值查界值表得到P值和α值比较。5.做出推断结论。|t|值、P值与统计结论α|t|值P值统计结论0.05<t0.05(v)>0.05不拒绝H0,差别无统计学意义1.当理论数太小可采取下列方法处理①增加样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数所在组与性质相近的组合并,使重新计算的理论数增大。由于后两法可能会损失信息,损害样本的随机性,不同的合并方式有可能影响推断结论,故不宜作常规方法。另外,不能把不同性质的实际数合并,如研究血型时,不能把不同的血型资料合并。2.如检验结果拒绝检验假设,只能认为各总体率或总体构成比之间总的来说有差别,但不能说明它们彼此之间都有差别,或某两者间有差别。3.关于单向有序行列表的统计处理在比较各处理组的效应有无差别时,宜用秩和检验法,如作χ2检验只说明各处理组的效应在构成比上有无差异。六、配对计数资料的χ2检验同一样品用两种方法处理,观察阳性和阴性个数。判断两种处理方法是否相同。当b+c>40时,χ2=(b-c)2/b+c;b+c<40时,校正公式:χ2=(|b-c|-1)2/b+c第六节直线相关和回归(一般考点)一、直线相关分析的用途、相关系数及其意义相关分析是研究事物或现象之间有无关系、关系的方向和密切程度。相关系数:是定量表示两个变量(X,Y)之间线性关系的方向和密切程度的指标,用r表示,r=lxy/,其值在-1至+1间,r没有单位。r呈正值,两变量间呈正相关,即两者的变化趋势是同向的,r=1时为完全正相关;如r呈负值,两变量呈负相关,即两者的变化趋势是反向的,r=-1时为完全负相关。r的绝对值越接近1,两变量间线性相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。二、直线回归分析的作用、回归系数及其意义直线回归分析的任务在于找出两个变量有依存关系的直线方程,以确定一条最接近于各实测点的直线,使各实测点与该线的纵向距离的平方和为最小。这个方程称为直线回归方程,据此方程描绘的直线就是回归直线。直线同归方程式的一般表达式Y=a+bX式中a为回归直线在Y轴上的截距,即a>0表示直线与Y轴的交点在原点上方,<0在原点下方,a=0过原点。b为样本回归系数,即回归直线的斜率,表示当X变动一个单位时,Y平均变动b个单位。b>0:表示Y随X增大而增大b<0:表示Y随X增大而减少b=0:表示Y不随X变化而变化第七节统计表和统计图(重要考点)一、统计表原则:结构简单、层次分明、内容安排合理、重点突出、数据准确。1.标题简练表达表的中心内容,位置在表的上方。2.标目有横标和纵标目,横标目通常位于表内左侧;纵标目列在表内上方,其表达结果与主辞呼应。3.线条力求简洁,一般为三线表。4.用阿拉伯数表示,如无数据或暂缺资料,也可用“-”或“…”来表示。5.备注一般不列入表内,解释在表下。内容排列:一般按事物发生频率大小顺序来排列,对比鲜明,重点突出。二、统计图1.线图(linediagram)(常考!)资料性质:适用于连续变量资料。分析目的:用线段的升降表达某事物的动态(差值)变化。2.半对数线图(semilogarithmiclinegraph)资料性质:适用于连续变量资料。分析目的:用线段的升降表达事物的发展速度变化趋势。3.直方图(histogram)资料性质:适用于数值变量,连续性资料的频数表资料。分析目的:直方图是以直方面积表达各组段的频数或频率。4.直条图(barchart)资料性质:适用于彼此独立的资料。分析目的:直条图是用等宽直条的和长短来表示各统计量的大小,进行比较。5.百分条图(percentchart)资料性质:构成比。分析目的:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论