重庆市第四十二中学2024届高三下期第二次联考数学试题_第1页
重庆市第四十二中学2024届高三下期第二次联考数学试题_第2页
重庆市第四十二中学2024届高三下期第二次联考数学试题_第3页
重庆市第四十二中学2024届高三下期第二次联考数学试题_第4页
重庆市第四十二中学2024届高三下期第二次联考数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第四十二中学2024届高三下期第二次联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2.设命题p:>1,n2>2n,则p为()A. B.C. D.3.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.4.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为()A. B. C. D.5.已知集合,集合,则().A. B.C. D.6.函数在上的大致图象是()A. B.C. D.7.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.8.定义在上的函数与其导函数的图象如图所示,设为坐标原点,、、、四点的横坐标依次为、、、,则函数的单调递减区间是()A. B. C. D.9.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°10.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.11.在中,,,,则边上的高为()A. B.2 C. D.12.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,为定长,,若的面积的最大值为,则边的长为____________.14.已知向量,,,则__________.15.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×○○√丙的猜测×√×√丁的猜测○○√×16.平面向量,,(R),且与的夹角等于与的夹角,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.18.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.19.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.20.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.21.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.22.(10分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

求得定点M的轨迹方程可得,解得a,b即可.【题目详解】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则=2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故选D.【题目点拨】本题考查了椭圆离心率,动点轨迹,属于中档题.2、C【解题分析】根据命题的否定,可以写出:,所以选C.3、C【解题分析】

根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【题目详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【题目点拨】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.4、D【解题分析】

根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可.【题目详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即.则直线的斜率.故选:D.【题目点拨】本题考查了抛物线的定义,直线斜率公式,属于中档题.5、A【解题分析】

算出集合A、B及,再求补集即可.【题目详解】由,得,所以,又,所以,故或.故选:A.【题目点拨】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.6、D【解题分析】

讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【题目详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【题目点拨】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.7、C【解题分析】

化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【题目详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【题目点拨】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.8、B【解题分析】

先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【题目详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【题目点拨】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.9、C【解题分析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【题目详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【题目点拨】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.10、D【解题分析】

由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【题目详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【题目点拨】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.11、C【解题分析】

结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【题目点拨】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.12、D【解题分析】

整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,,因为纯虚数,所以,则,故选:D【题目点拨】本题考查已知复数的类型求参数范围,考查复数的除法运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设,以为原点,为轴建系,则,,设,,,利用求向量模的公式,可得,根据三角形面积公式进一步求出的值即为所求.【题目详解】解:设,以为原点,为轴建系,则,,设,,则,即,由,可得.则.故答案为:.【题目点拨】本题考查向量模的计算,建系是关键,属于难题.14、3【解题分析】

由题意得,,再代入中,计算即可得答案.【题目详解】由题意可得,,∴,解得,∴.故答案为:.【题目点拨】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的运用.15、乙、丁【解题分析】

本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【题目详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【题目点拨】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.16、2【解题分析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【题目详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【题目点拨】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.18、(1);(2)【解题分析】

(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【题目详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【题目点拨】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.19、(1)(2)【解题分析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所以直线被圆截得的弦长的最大值为.考点:直线与圆位置关系20、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解题分析】

(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【题目详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论