版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安阳市重点中学2024届高三4月高三年级联合考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.2.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.3.用数学归纳法证明1+2+3+⋯+n2=n4A.k2+1C.k2+14.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.5.已知向量,且,则m=()A.−8 B.−6C.6 D.86.已知复数z,则复数z的虚部为()A. B. C.i D.i7.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.8.设复数满足,则()A. B. C. D.9.已知复数,满足,则()A.1 B. C. D.510.已知数列满足:,则()A.16 B.25 C.28 D.3311.的展开式中有理项有()A.项 B.项 C.项 D.项12.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学校高一、高二、高三年级的学生人数之比为,现按年级采用分层抽样的方法抽取若干人,若抽取的高三年级为12人,则抽取的样本容量为________人.14.如图,在矩形中,为边的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为.15.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.16.直线(,)过圆:的圆心,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.(1)证明:BD⊥EG;(2)若三棱锥,求菱形ABCD的边长.18.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.19.(12分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.20.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.21.(12分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.(1)求△ABC的面积;(2)若D,E是BC边上的三等分点,求.22.(10分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【题目点拨】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.2、C【解题分析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故选C3、C【解题分析】
首先分析题目求用数学归纳法证明1+1+3+…+n1=n4【题目详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故选:C.【题目点拨】本题主要考查数学归纳法,属于中档题./4、D【解题分析】
通过计算,可得,最后计算可得结果.【题目详解】由题可知:所以所以猜想可知:由所以所以故选:D【题目点拨】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.5、D【解题分析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【题目详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【题目点拨】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.6、B【解题分析】
利用复数的运算法则、虚部的定义即可得出【题目详解】,则复数z的虚部为.故选:B.【题目点拨】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.7、D【解题分析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【题目点拨】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.8、D【解题分析】
根据复数运算,即可容易求得结果.【题目详解】.故选:D.【题目点拨】本题考查复数的四则运算,属基础题.9、A【解题分析】
首先根据复数代数形式的除法运算求出,求出的模即可.【题目详解】解:,,故选:A【题目点拨】本题考查了复数求模问题,考查复数的除法运算,属于基础题.10、C【解题分析】
依次递推求出得解.【题目详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【题目点拨】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.11、B【解题分析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【题目详解】,,当,,,时,为有理项,共项.故选:B.【题目点拨】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.12、A【解题分析】
设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【题目详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【题目点拨】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据分层抽样的定义建立比例关系即可得到结论.【题目详解】设抽取的样本为,则由题意得,解得.故答案为:【题目点拨】本题考查了分层抽样的知识,算出抽样比是解题的关键,属于基础题.14、【解题分析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.15、等腰三角形【解题分析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,16、;【解题分析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.【题目详解】圆:的标准方程为,圆心为,由题意,即,∴,当且仅当,即时等号成立,故答案为:.【题目点拨】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解题分析】
(1)取中点,连,可得,结合平面EAD⊥平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB=2EF,,求出体积,建立的方程,即可求出结论.【题目详解】(1)取中点,连,底面ABCD为菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,,为中点,,平面,平面平面,;(2)设菱形ABCD的边长为,则,,,,,所以菱形ABCD的边长为.【题目点拨】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.18、(1),表示圆心为,半径为的圆;(2)【解题分析】
(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【题目详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的点到直线的最大距离为.【题目点拨】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.19、(1);(2)【解题分析】
(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果;(2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果.【题目详解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范围为【题目点拨】本题考查解三角形知识的相关应用,涉及到正弦定理边化角的应用、两角和差正弦公式和辅助角公式的应用、与三角函数值域有关的取值范围的求解问题;求解取值范围的关键是能够利用正弦定理将边长的问题转化为三角函数的问题,进而利用正弦型函数值域的求解方法求得结果.20、(1)证明见解析;(2).【解题分析】
(1)取中点,连接,,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积.【题目详解】解:(1)证明:取中点D,连接,.因为,,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【题目点拨】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.21、(1);(2)【解题分析】
(1)根据正弦定理,可得△ABC为直角三角形,然后可计算b,可得结果.(2)计算,然后根据余弦定理,可得,利用平方关系,可得结果.【题目详解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面积为.(2)设D靠近点B,则BD=DE=EC=1.,所以所以.【题目点拨】本题考查正弦定理的应用,属基础题.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全民国家安全教育日的法律考试答题活动总结
- 化工工厂后勤服务全面总结
- 软件行业工程师工作体会
- 急诊护士守护生命安全
- KTV前台服务心得体会
- 书籍《外婆的道歉信》的读书笔记感想
- 2023年企业主要负责人安全培训考试题带答案(考试直接用)
- 2023-2024年项目部治理人员安全培训考试题及完整答案【名校卷】
- 2023年员工三级安全培训考试题(预热题)
- 2023-2024年项目部安全培训考试题原创题
- (完整版)初中英语语法专练动名词Word版含答案
- 医院人才培养和梯队建设制度
- 幼儿园医护助教知识学习培训PPT
- 管体结构尺寸与配筋设计图册
- 2022年版《义务教育数学课程标准》及解读
- 井下作业风险识别与控制
- 《义务教育地理课程标准(2022年版)》全文学习解读-2022年版义务教育课
- 2019天线年会交流-毫米波有源相控阵现状及其发展趋势
- 毕淑敏中考阅读理解14篇(含答案)
- 项目管理系统需求说明书
- 八年级英语下册期末复习首字母填空500题附答案
评论
0/150
提交评论