版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省启东市建新中学高三第一次段考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.2.若复数满足,则的虚部为()A.5 B. C. D.-53.函数的定义域为()A. B. C. D.4.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.5.已知,则的大小关系为A. B. C. D.6.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.7.若复数是纯虚数,则()A.3 B.5 C. D.8.向量,,且,则()A. B. C. D.9.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.10.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.11.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户12.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.14.在数列中,,则数列的通项公式_____.15.设函数在区间上的值域是,则的取值范围是__________.16.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.18.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02419.(12分)求下列函数的导数:(1)(2)20.(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.21.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.22.(10分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【题目详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【题目点拨】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.2、C【解题分析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3、C【解题分析】
函数的定义域应满足故选C.4、A【解题分析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【题目点拨】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.5、D【解题分析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6、D【解题分析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【题目详解】由题意,设每一行的和为故因此:故故选:D【题目点拨】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、C【解题分析】
先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【题目点拨】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.8、D【解题分析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【题目详解】故选:D【题目点拨】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.9、D【解题分析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【题目详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【题目点拨】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.10、A【解题分析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【题目详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【题目点拨】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.11、D【解题分析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【题目详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【题目点拨】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.12、A【解题分析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.【题目详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【题目点拨】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【题目详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【题目点拨】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.14、【解题分析】
由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【题目详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【题目点拨】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.15、.【解题分析】
配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【题目详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【题目点拨】本题考查函数值域,考查数形结合思想,属于基础题.16、【解题分析】
真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求解即可.【题目详解】,且(且)有最小值,,的取值范围为.故答案为:.【题目点拨】本题考查对数型复合函数的性质,熟练掌握基本初等函数的性质是解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ).【解题分析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.18、(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解题分析】
(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【题目详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.【题目点拨】本题考查独立性检验,考查分层抽样的性质.考查学生的数据处理能力.属于中档题.19、(1);(2).【解题分析】
(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【题目详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.【题目点拨】本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.20、(1)(2),.【解题分析】
(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【题目详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【题目点拨】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全民国家安全教育日的法律考试答题活动总结
- 化工工厂后勤服务全面总结
- 软件行业工程师工作体会
- 急诊护士守护生命安全
- KTV前台服务心得体会
- 书籍《外婆的道歉信》的读书笔记感想
- 2023年企业主要负责人安全培训考试题带答案(考试直接用)
- 2023-2024年项目部治理人员安全培训考试题及完整答案【名校卷】
- 2023年员工三级安全培训考试题(预热题)
- 2023-2024年项目部安全培训考试题原创题
- 医疗护理员理论知识考核试题题库及答案
- 湖北省荆州市八县市区2023-2024学年高二上学期1月期末联考数学试题 附答案
- 保密知识培训
- 2024年同等学力申硕英语考试真题
- 2024年人教版八年级历史下册期末考试卷(附答案)
- Python语言基础与应用学习通超星期末考试答案章节答案2024年
- 2024年山东省济南市中考道德与法治试题卷(含答案解析)
- 危险源辨识及分级管控管理制度
- 江西省稳派教育2025届数学高二上期末教学质量检测模拟试题含解析
- 2021-2022学年统编本五四制道德与法治五年级上册期末检测题及答案(共6套)
- GB/T 19752-2024混合动力电动汽车动力性能试验方法
评论
0/150
提交评论