版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市忻州第一中学2024届高三第十次考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.2.已知是虚数单位,则()A. B. C. D.3.已知函数是奇函数,且,若对,恒成立,则的取值范围是()A. B. C. D.4.已知函数的值域为,函数,则的图象的对称中心为()A. B.C. D.5.已知集合,,,则集合()A. B. C. D.6.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.7.函数(或)的图象大致是()A. B. C. D.8.曲线在点处的切线方程为,则()A. B. C.4 D.89.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.10.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.11.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.12.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.14.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.15.若函数()的图象与直线相切,则______.16.设向量,,且,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设复数满足(为虚数单位),则的模为______.18.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.①求每层应抽取的人数;②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.19.(12分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.20.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.21.(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.22.(10分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【题目详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【题目点拨】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.2、B【解题分析】
根据复数的乘法运算法则,直接计算,即可得出结果.【题目详解】.故选B【题目点拨】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.3、A【解题分析】
先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【题目详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,,得,所以的取值范围是.故选:A.【题目点拨】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.4、B【解题分析】
由值域为确定的值,得,利用对称中心列方程求解即可【题目详解】因为,又依题意知的值域为,所以得,,所以,令,得,则的图象的对称中心为.故选:B【题目点拨】本题考查三角函数的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为05、D【解题分析】
根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【题目点拨】本题考查集合的混合运算,属基础题.6、D【解题分析】
根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【题目点拨】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.7、A【解题分析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【题目详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【题目点拨】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.8、B【解题分析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.【题目详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【题目点拨】本题主要考查了导数的几何意义,切线方程,属于中档题.9、B【解题分析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.【题目详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【题目点拨】本题考查函数单调性和值域的判断问题,属于基础题.10、D【解题分析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,,因为纯虚数,所以,则,故选:D【题目点拨】本题考查已知复数的类型求参数范围,考查复数的除法运算.11、D【解题分析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【题目详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【题目点拨】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.12、D【解题分析】
由题意得,再利用基本不等式即可求解.【题目详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【题目点拨】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
根据为等边三角形建立的关系式,从而可求离心率.【题目详解】据题设分析知,,所以,得,所以双曲线的离心率.【题目点拨】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.14、【解题分析】
由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.【题目详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:.故答案为:1.【题目点拨】本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.15、2【解题分析】
设切点由已知可得,即可解得所求.【题目详解】设,因为,所以,即,又,.所以,即,.故答案为:.【题目点拨】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.16、【解题分析】
根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【题目详解】由题可知:且由所以故答案为:【题目点拨】本题考查向量的坐标计算,主要考查计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、1【解题分析】
整理已知利用复数的除法运算方式计算,再由求模公式得答案.【题目详解】因为,即所以的模为1故答案为:1【题目点拨】本题考查复数的除法运算与求模,属于基础题.18、(1),,,中位数;(2)①三层中抽取的人数分别为2,5,13;②【解题分析】
(1)根据频率分布直方表的性质,即可求得,得到,,再结合中位数的计算方法,即可求解.(2)①由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;②由①知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【题目详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)①由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,,的频数分别为20,50,130,所以从,,三层中抽取的人数分别为2,5,13.②由①知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,,,,,,,,,,,,,,,,,,,,,共有21种,其中2人不在同一层的情况为,,,,,,,,,,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【题目点拨】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.19、(1)①见解析,②见解析;(2)见解析【解题分析】
(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.【题目详解】解:(1)①当时,,,,又,切线方程为,即;②令,则,在上单调递减.又,当时,,即;当时,,即;当时,,即.证明:(2)由题意,,而,令,解得.,,在上有唯一零点.当时,,在上单调递减,当,时,,在,上单调递增..在恒成立,且有唯一解,,即,消去,得,即.令,则,在上恒成立,在上单调递减,又,,.在上单调递增,.【题目点拨】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题.20、(1).(2).【解题分析】
(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃时,需求量为300,求出Y=300元;当温度低于20℃时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.【题目详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p.(2)当温度大于等于25℃时,需求量为500,Y=450×2=900元,当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P.【题目点拨】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024民事诉讼委托代理合同
- 2024工程维修合同样本
- 2024种猪销售合同范文
- 2024广告互换合同范文
- 2024个人汽车的租赁合同范本
- 权威借款合同范文汇编
- 2024的进出口贸易合同范文
- 品牌代理合作协议
- 2024小产权房买卖合同模板2
- 2024临时工合同协议书关于临时工的协议书
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 档案整理及数字化服务方案(技术标 )
- 建筑桩基技术规范 JGJ942008
- C站使用说明JRC
- 习作:推荐一个好地方 推荐ppt课件
- 角的度量 华应龙(课堂PPT)
- 公路铣刨机整机的设计含全套CAD图纸
- 机器人学课程教学大纲
- 浙江世贸君澜酒店集团介绍
- GHTF—质量管理体系--过程验证指南中文版
- 铝及铝合金焊接作业指导书
评论
0/150
提交评论