柳州铁路第一中学2024届高三考前第二次模拟考试数学试题_第1页
柳州铁路第一中学2024届高三考前第二次模拟考试数学试题_第2页
柳州铁路第一中学2024届高三考前第二次模拟考试数学试题_第3页
柳州铁路第一中学2024届高三考前第二次模拟考试数学试题_第4页
柳州铁路第一中学2024届高三考前第二次模拟考试数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柳州铁路第一中学2024届高三考前第二次模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.2.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲3.已知集合,,,则集合()A. B. C. D.4.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.5.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.6.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.7.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.28.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.9.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()A. B. C. D.10.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.11.已知,且,则()A. B. C. D.12.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最大值为________.14.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.15.在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是______.16.已知满足且目标函数的最大值为7,最小值为1,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.18.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.19.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.20.(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.21.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.22.(10分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【题目详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【题目点拨】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题2、D【解题分析】

根据雷达图对选项逐一分析,由此确定叙述正确的选项.【题目详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【题目点拨】本小题主要考查图表分析和数据处理,属于基础题.3、D【解题分析】

根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【题目点拨】本题考查集合的混合运算,属基础题.4、B【解题分析】

利用乘法运算化简复数即可得到答案.【题目详解】由已知,,所以,解得.故选:B【题目点拨】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.5、B【解题分析】

由,,三点共线,可得,转化,利用均值不等式,即得解.【题目详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【题目点拨】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、D【解题分析】

利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【题目详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【题目点拨】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.7、D【解题分析】

根据抛物线的定义求得,由此求得的长.【题目详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【题目点拨】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.8、C【解题分析】

由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【题目详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【题目点拨】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.9、A【解题分析】

构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【题目详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.由得,所以,故不等式的解集为.故选:A【题目点拨】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.10、D【解题分析】

根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【题目详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【题目点拨】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.11、B【解题分析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.12、D【解题分析】

由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【题目详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【题目点拨】本题考查了利用几何法解决非线性规划问题,属于中档题.14、1【解题分析】

由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解.【题目详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1.【题目点拨】本题考查了二项式定理及展开式通项公式,属于中档题.15、2【解题分析】

根据是等腰直角三角形,且为中点可得,再由双曲线的性质可得,解出即得.【题目详解】由题,设点,由,解得,即线段,为直角三角形,,且,又为双曲线右焦点,过点,且轴,,可得,,整理得:,即,又,.故答案为:【题目点拨】本题考查双曲线的简单性质,是常考题型.16、-2【解题分析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【题目详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【题目点拨】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)见解析【解题分析】

(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,,,求得,再代入证明。【题目详解】(1)解:令可得,即.所以.时,可得,当时,所以.显然当时,满足上式.所以.,所以数列是等差数列,(2)由(1)知,.设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,,,而时,,,所以当时,.当时,,∴对任意,都有,【题目点拨】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,18、(1)见解析(2)需要,见解析【解题分析】

(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【题目详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,,所以为了使损失尽量小,小张需要检查其余所有零件.【题目点拨】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.19、(1)见解析(2)【解题分析】

(Ⅰ)取的中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【题目详解】(Ⅰ)在棱上存在点,使得平面,点为棱的中点.理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,,又平面,平面,所以,平面.(Ⅱ)由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,,,,,,设平面的法向量为,则由得,令,则,,所以取,显然可取平面的法向量,由题意:,所以.由于平面,所以在平面内的射影为,所以为直线与平面所成的角,易知在中,,从而,所以直线与平面所成的角为.【题目点拨】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.20、(1);(2)见解析【解题分析】

(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【题目详解】(1)设函数,,令,令故在单调递减,在单调递增,∴,∵时;;时.(2)①过点,的直线为,则令,,,.②过点,的直线为,则,在上单调递增.③设直线,与从左到右交点的横坐标依次为,,由图知.④在,处的切线分别为,,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论