版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省鞍山市台安县高级中学高考考前模拟考试数学试题理试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.2.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.3.点在所在的平面内,,,,,且,则()A. B. C. D.4.已知等差数列中,,则()A.20 B.18 C.16 D.145.曲线上任意一点处的切线斜率的最小值为()A.3 B.2 C. D.16.如图,在中,,且,则()A.1 B. C. D.7.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.函数在上的大致图象是()A. B.C. D.9.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.10.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.11.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.12.设a,b都是不等于1的正数,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数图象上一点处的切线方程为,则_______.14.已知实数,满足约束条件,则的最大值是__________.15.已知集合,,则_____________.16.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.18.(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.19.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.20.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.21.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.22.(10分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【题目详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【题目点拨】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.2、C【解题分析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【题目详解】∵,∴,∵为纯虚数,∴,解得.故选C.【题目点拨】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.3、D【解题分析】
确定点为外心,代入化简得到,,再根据计算得到答案.【题目详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【题目点拨】本题考查了向量模长的计算,意在考查学生的计算能力.4、A【解题分析】
设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【题目详解】设等差数列的公差为.由得,解得.所以.故选:A【题目点拨】本题主要考查了等差数列的基本量求解,属于基础题.5、A【解题分析】
根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【题目详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【题目点拨】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.6、C【解题分析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【题目详解】由,则,即,所以,又共线,则.故选:C【题目点拨】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.7、B【解题分析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.【题目详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【题目点拨】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.8、D【解题分析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【题目详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【题目点拨】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.9、C【解题分析】
根据程序图,当x<0时结束对x的计算,可得y值.【题目详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【题目点拨】本题考查程序框图,是基础题.10、B【解题分析】
设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【题目详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【题目点拨】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.11、D【解题分析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【题目详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.12、C【解题分析】
根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.【题目详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C.【题目点拨】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
求出导函数,由切线方程得切线斜率和切点坐标,从而可求得.【题目详解】由题意,∵函数图象在点处的切线方程为,∴,解得,∴.故答案为:1.【题目点拨】本题考查导数的几何意义,求出导函数是解题基础,14、【解题分析】
令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【题目详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【题目点拨】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15、【解题分析】
由集合和集合求出交集即可.【题目详解】解:集合,,.故答案为:.【题目点拨】本题考查了交集及其运算,属于基础题.16、11【解题分析】
将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”.采用分类计数原理,求得总的方法数.【题目详解】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个:,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【题目点拨】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,直线l方程为x=-1;当时,直线l方程为y=(x+1)tanα;x2+y2=2x(2)或.【解题分析】
(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.【题目详解】(1)当时,直线l的普通方程为x=-1;当时,消去参数得直线l的普通方程为y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即为曲线C的直角坐标方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直线l的倾斜角α为或.【题目点拨】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.18、(1)个;(1)存在,.【解题分析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围.试题解析:(1)设,.............1分令,得递增;令,得递减,.................1分∴,∴,即,∴.............3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为1...........................5分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立,................................6分①设,令,得递增;令,得递减,∴,当即时,,∴,∵,∴4.故当时,对恒成立,.......................8分当即时,在上递减,∴.∵,∴,故当时,对恒成立............................10分②若对恒成立,则,∴...........11分由①及②得,.故存在实数,使得对恒成立,且的取值范围为................................................11分考点:导数应用.【思路点睛】本题考查了函数恒成立问题;利用导数来判断函数的单调性,进一步求最值;属于难题.本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.19、(1)当时,没有极值点,当时,有一个极小值点.(2)【解题分析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.20、(1);(2)【解题分析】
(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【题目详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【题目点拨】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级英语教学计划模板
- 体育教研工作计划模板汇编
- 初一上学期班主任工作计划024年
- 2025年社区关爱残疾人工作计划模板新编
- 学校档案管理年度工作计划范文
- 计划标段生产建议计划
- 初一学期的班级工作计划
- 《食品风险分析框架》课件
- 《骨科常规护理技术》课件
- 土地承包合同中粮食补贴协议备注书面书写
- 新教材北师大版数学一年级上册教学反思全册
- 驾驶员安全驾驶知识培训与评估
- 食品安全事故流行病学调查表格
- 住宅排气管道系统工程技术标准
- 标识标牌售后服务方案
- 人教版高中地理必修一全册测试题(16份含答案)
- 基于单片机数字秒表的设计
- 基于LabVIEW的温湿度监测系统
- 人保《理赔工作聘请保险公估机构管理办法》实施细则
- GB/T 40636-2021挂面
- GB 18383-2007絮用纤维制品通用技术要求
评论
0/150
提交评论