黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题_第1页
黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题_第2页
黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题_第3页
黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题_第4页
黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江七台河市2024届高三数学试题4月仿真模拟联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.2.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲 B.乙 C.丙 D.丁3.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.1804.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.5.已知实数满足不等式组,则的最小值为()A. B. C. D.6.在的展开式中,的系数为()A.-120 B.120 C.-15 D.157.已知函数的部分图象如图所示,则()A. B. C. D.8.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.329.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.10.若函数函数只有1个零点,则的取值范围是()A. B. C. D.11.已知,则的大小关系是()A. B. C. D.12.已知为虚数单位,实数满足,则()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多______天.14.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.15.若,则=______,=______.16.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设复数满足(为虚数单位),则的模为______.18.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.19.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.21.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.22.(10分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【题目点拨】本题主要考查了枚举法求古典概型的方法,属于基础题型.2、A【解题分析】

可采用假设法进行讨论推理,即可得到结论.【题目详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【题目点拨】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.3、A【解题分析】

因为,可得,根据等差数列前项和,即可求得答案.【题目详解】,,.故选:A.【题目点拨】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.4、C【解题分析】

根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【题目详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【题目点拨】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.5、B【解题分析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【题目详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【题目点拨】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.6、C【解题分析】

写出展开式的通项公式,令,即,则可求系数.【题目详解】的展开式的通项公式为,令,即时,系数为.故选C【题目点拨】本题考查二项式展开的通项公式,属基础题.7、A【解题分析】

先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【题目详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【题目点拨】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.8、B【解题分析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【题目详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【题目点拨】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.9、A【解题分析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【题目详解】因为,所以z的虚部为2.【题目点拨】本题考查复数的四则运算及虚部的概念,计算过程要注意.10、C【解题分析】

转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【题目详解】有1个零点等价于与的图象有1个交点.记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得.所以切线斜率为,所以或.故选:C【题目点拨】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.11、B【解题分析】

利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【题目详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【题目点拨】本题主要考查对数、指数的大小比较,属于基础题.12、D【解题分析】,则故选D.二、填空题:本题共4小题,每小题5分,共20分。13、72【解题分析】

根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【题目详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【题目点拨】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】

先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【题目详解】取的外心为,设为球心,连接,则平面,取的中点,连接,,过做于点,易知四边形为矩形,连接,,设,.连接,则,,三点共线,易知,所以,.在和中,,,即,,所以,,得.所以.【题目点拨】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.15、10【解题分析】

①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【题目详解】①由题:,则;②由①可得:.故答案为:①1,②0【题目点拨】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.16、【解题分析】

根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【题目详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时,取得最小值因而故答案为:【题目点拨】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、1【解题分析】

整理已知利用复数的除法运算方式计算,再由求模公式得答案.【题目详解】因为,即所以的模为1故答案为:1【题目点拨】本题考查复数的除法运算与求模,属于基础题.18、(1),(2)(3)【解题分析】

(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【题目详解】解:(1)依题意:,即,解得:所以,(2),,,上面两式相减,得:则即所以,(3),所以由得,,即【题目点拨】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.19、(1)(2)应该购买21件易耗品【解题分析】

(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解.【题目详解】(1)由题中的表格可知A型号的设备一个月使用易耗品的件数为6和7的频率均为;B型号的设备一个月使用易耗品的件数为6,7,8的频率分别为;C型号的设备一个月使用易耗品的件数为7和8的频率分别为;设该单位一个月中三台设备使用易耗品的件数分别为,则,,,设该单位三台设备一个月中使用易耗品的件数总数为X,则而,,故,即该单位一个月中三台设备使用的易耗品总数超过21件的概率为.(2)以题意知,X所有可能的取值为;;;由(1)知,,若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;;若该单位在肋买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;,所以该单位在购买设备时应该购买21件易耗品【题目点拨】本题考查独立事件的概率,考查离散型随机变量的分布列和期望,考查数据处理能力.20、(1)证明见解析(2)【解题分析】

(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【题目详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【题目点拨】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.21、(1);(2).【解题分析】

(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论