江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷_第1页
江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷_第2页
江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷_第3页
江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷_第4页
江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市教育学会学业水平监测2024届高三下学期联考试卷(一)数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足则的最大值为()A.2 B. C.1 D.02.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.3.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.C. D.4.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.5.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2 B. C. D.6.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q7.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.9.已知函数,则在上不单调的一个充分不必要条件可以是()A. B. C.或 D.10.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件11.已知,则()A. B. C. D.12.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则实数______.14.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.15.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________.16.数列的前项和为,则数列的前项和_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.18.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程为,连接并延长交于,求的最大值.19.(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.20.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.(1)求证:;(2)设平面与交于点,求证:为的中点.21.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.22.(10分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

作出可行域,平移目标直线即可求解.【题目详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【题目点拨】考查线性规划,是基础题.2、A【解题分析】

由已知可得,根据二倍角公式即可求解.【题目详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【题目点拨】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.3、B【解题分析】

还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【题目详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【题目点拨】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.4、B【解题分析】

求出在的解析式,作出函数图象,数形结合即可得到答案.【题目详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【题目点拨】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.5、D【解题分析】

选取为基底,其他向量都用基底表示后进行运算.【题目详解】由题意是的重心,,∴,,∴,故选:D.【题目点拨】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.6、C【解题分析】

解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C7、C【解题分析】

根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【题目详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:.【题目点拨】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.8、C【解题分析】

根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【题目详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【题目点拨】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.9、D【解题分析】

先求函数在上不单调的充要条件,即在上有解,即可得出结论.【题目详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【题目点拨】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.10、C【解题分析】

根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【题目详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【题目点拨】本题主要考查了线面平行的性质定理和判定定理,属于基础题.11、D【解题分析】

根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【题目详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【题目点拨】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.12、D【解题分析】

以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【题目详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【题目点拨】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解题分析】

根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【题目详解】由题意得:,解得:本题正确结果:【题目点拨】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.14、【解题分析】

作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.15、【解题分析】

先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解.【题目详解】由是单位向量.若,,设,则,,又,则,则,则,又,所以,(当或时取等)即的取值范围是,,故答案为:,.【题目点拨】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平.16、【解题分析】

解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【题目详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【题目点拨】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),.【解题分析】

(Ⅰ)运用正弦定理和二角和的正弦公式,化简,即可求出角的大小;(Ⅱ)通过面积公式和,可以求出,这样用余弦定理可以求出,用余弦定理求出,根据同角的三角函数关系,可以求出,这样可以求出,最后利用二角差的余弦公式求出的值.【题目详解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【题目点拨】本题考查了正弦定理、余弦定理、面积公式、二倍角公式、二角差的余弦公式以及同角的三角函数关系,考查了运算能力.18、(1);(2)【解题分析】

(1)设的极坐标为,在中,有,即可得结果;(2)设射线:,,圆的极坐标方程为,联立两个方程,可求出,联立可得,则计算可得,利用三角函数的性质可得最值.【题目详解】(1)设的极坐标为,在中,有,点的轨迹的极坐标方程为;(2)设射线:,,圆的极坐标方程为,由得:,由得:,,,当,即时,,的最大值为.【题目点拨】本题考查极坐标方程的应用,考查三角函数性质的应用,是中档题.19、(1);(2).【解题分析】

(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【题目详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得.当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理在区间内存在零点.∴在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单凋递减,在区间上单调递增.记的两个零点为,∴,必有.由,得.∴又∵,∴.综上所述,实数的取值范围为.【题目点拨】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.20、(1)证明见解析;(2)证明见解析.【解题分析】

(1)要做证明,只需证明平面即可;(2)易得∥平面,平面,利用线面平行的性质定理即可得到∥,从而获得证明【题目详解】证明:(1)因为平面,平面,所以.因为,所以.又因为,平面,平面,所以平面.又因为平面,所以.(2)因为平面与交于点,所以平面.因为分别为的中点,所以∥.又因为平面,平面,所以∥平面.又因为平面,平面平面,所以∥,又因为是的中点,所以为的中点.【题目点拨】本题考查线面垂直的判定定理以及线面平行的性质定理,考查学生的逻辑推理能力,是一道容易题.21、(1)见解析;(2).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论