上海普陀区2024届高三学生寒假自主学习调查数学试题_第1页
上海普陀区2024届高三学生寒假自主学习调查数学试题_第2页
上海普陀区2024届高三学生寒假自主学习调查数学试题_第3页
上海普陀区2024届高三学生寒假自主学习调查数学试题_第4页
上海普陀区2024届高三学生寒假自主学习调查数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海普陀区2024届高三学生寒假自主学习调查数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.363.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.544.已知,则()A. B. C. D.5.已知集合,,若,则实数的值可以为()A. B. C. D.6.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.7.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.8.函数的大致图象为()A. B.C. D.9.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.10.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.11.复数满足,则()A. B. C. D.12.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的最小值是______.14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.15.展开式中的系数的和大于8而小于32,则______.16.若函数,其中且,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,其中,.(1)求角的值;(2)若,,为边上的任意一点,求的最小值.18.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.19.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.20.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,,求直线的斜率.21.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.22.(10分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题2、B【解题分析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【题目详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【题目点拨】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3、C【解题分析】

由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【题目详解】正项等差数列的前项和,,,解得或(舍),,故选C.【题目点拨】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.4、C【解题分析】

利用诱导公式得,,再利用倍角公式,即可得答案.【题目详解】由可得,∴,∴.故选:C.【题目点拨】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.5、D【解题分析】

由题意可得,根据,即可得出,从而求出结果.【题目详解】,且,,∴的值可以为.故选:D.【题目点拨】考查描述法表示集合的定义,以及并集的定义及运算.6、C【解题分析】

由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【题目详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.7、D【解题分析】

设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【题目详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【题目点拨】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.8、A【解题分析】

利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【题目详解】,排除掉C,D;,,,.故选:A.【题目点拨】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.9、C【解题分析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.10、B【解题分析】

双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.11、C【解题分析】

利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【题目点拨】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.12、D【解题分析】

根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【题目详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【题目点拨】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

先将前两项利用基本不等式去掉,,再处理只含的算式即可.【题目详解】解:,因为,所以,所以,当且仅当,,时等号成立,故答案为:1.【题目点拨】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题.14、【解题分析】

先由等面积法求得,利用向量几何意义求解即可.【题目详解】由等面积法可得,依题意可得,,所以.故答案为:【题目点拨】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15、4【解题分析】

由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【题目详解】观察式子可知,,故答案为:4.【题目点拨】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.16、【解题分析】

先化简函数的解析式,在求出,从而求得的值.【题目详解】由题意,函数可化简为,所以,所以.故答案为:0.【题目点拨】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中,由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【题目详解】(1),,由题知,,则,则,,;(2)在中,由余弦定理得,,设,其中.在中,,,,,所以,,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【题目点拨】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.18、(1)元.(2)①②万元【解题分析】

(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【题目详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、、.所以;;.所以的分布列为所以(元).即每件产品的平均销售利润为元.(2)①由,得,令,,,则,由表中数据可得,则,所以,即,因为取,所以,故所求的回归方程为.②设年收益为万元,则令,则,,当时,,当时,,所以当,即时,有最大值.即该企业每年应该投入万元营销费,能使得该企业的年收益的预报值达到最大,最大收益为万元.【题目点拨】本题考查频率分布直方图,考查随机变量概率分布列与期望,考查求线性回归直线方程,及回归方程的应用.在求指数型回归方程时,可通过取对数的方法转化为求线性回归直线方程,然后再求出指数型回归方程.19、(1)见解析(2)(3)见解析【解题分析】试题分析:(1)(),所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以,又由,,得,,即,所以,故数列是等比数列.(2)若是等比数列,设其公比为(),当时,,即,得,①当时,,即,得,②当时,,即,得,③②①,得,③②,得,解得.代入①式,得.此时(),所以,是公比为1的等比数列,故.(3)证明:若,由,得,又,解得.由,,,,代入得,所以,,成等差数列,由,得,两式相减得:即所以相减得:所以所以,因为,所以,即数列是等差数列.20、(1)(2)0【解题分析】

(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【题目详解】(1)依题意,,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即①直线的方程为,即②联立①②解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【题目点拨】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.21、(1)(2)详见解析(3)【解题分析】

试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以试题解析:(1)当时,,由得减区间;(2)法1:,,,所以,方程有两个不相等的实数根;法2:,,是开口向上的二次函数,所以,方程有两个不相等的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论