2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题含解析_第1页
2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题含解析_第2页
2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题含解析_第3页
2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题含解析_第4页
2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州省六盘水市九年级数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.方程x2﹣5=0的实数解为()A. B. C. D.±52.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在下列命题中,真命题是()A.相等的角是对顶角 B.同位角相等C.三角形的外角和是 D.角平分线上的点到角的两边相等4.如图,在中,,,则的值是()A. B.1 C. D.5.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;6.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A.主视图会发生改变 B.俯视图会发生改变C.左视图会发生改变 D.三种视图都会发生改变7.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.8.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A. B. C. D.9.方程的两根之和是()A. B. C. D.10.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm11.下列说法错误的是()A.将数用科学记数法表示为B.的平方根为C.无限小数是无理数D.比更大,比更小12.2020的相反数是()A. B. C.-2020 D.2020二、填空题(每题4分,共24分)13.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.14.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____15.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.16.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是_____.17.如果四条线段m,n,x,y成比例,若m=2,n=8,y=20,则线段x的长为________.18.如图,设点P在函数y=的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为_____.三、解答题(共78分)19.(8分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.20.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.21.(8分)解方程:x2﹣6x+8=1.22.(10分)如图,在直角坐标系中,,.借助网格,画出线段向右平移个单位长度后的对应线段,若直线平分四边形的面积,请求出实数的值.23.(10分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.(10分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?25.(12分)如图,一次函数的图象和反比例函数的图象相交于两点.(1)试确定一次函数与反比例函数的解析式;(2)求的面积;(3)结合图象,直接写出使成立的的取值范围.26.已知,求代数式的值.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.2、A【解析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.3、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.4、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【详解】∵多边形从一个顶点出发可引出4条对角线,

∴,

解得:,

∴内角和;任何多边形的外角和都等于360.故选:A.【点睛】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.6、A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.7、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.8、B【解析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=-,得到空白部分的面积=+,于是得到结论.【详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB

∴AO1=AO2=O1O2=BO1=1,

∴△AO1O2是等边三角形,

∴∠AO1O2=60°,AB=2AO1sin60°=

∴∠AO1B=120°,∴阴影部分的面积=2×()=-,

∴空白部分和阴影部分的面积和=2π-(-)=+,

∴骰子落在重叠区域(阴影部分)的概率大约为≈,

故选B.【点睛】此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.9、C【分析】利用两个根和的关系式解答即可.【详解】两个根的和=,故选:C.【点睛】此题考查一元二次方程根与系数的关系式,.10、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.11、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确.故选:C.【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.12、C【分析】根据相反数的定义选择即可.【详解】2020的相反数是-2020,故选C.【点睛】本题考查相反数的定义,注意区别倒数,绝对值,负倒数等知识,掌握概念是关键.二、填空题(每题4分,共24分)13、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【点睛】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.14、﹣2【解析】∵反比例函数y=-6x∴3=-6m,解得15、2+.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点(0,1),四边形,,均是正方形,点、、和点、、、分别在抛物线和y轴上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵点的纵坐标与点相同,点在二次函数的图象上,∴(,),即,∴.故答案为:2+.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键.16、.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图像上的点的坐标特征得到A点(2,0),B点(0,2),易得△AOB为等腰直角三角形,则AB=2,所以,EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1,设F点坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),根据反比例函数图象上的点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,则E点坐标为(,),继而可求得k的值.【详解】如图,作FH⊥x轴,EC⊥y轴,FH与EC交于D,由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,∴△AOB为等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故答案为.【点睛】本题考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17、1【详解】解:根据题意可知m:n=x:y,即2:8=x:20,解得:x=1.故答案为:118、4【解析】=6-1-1=4【点睛】本题考察了反比例函数的几何意义及割补法求图形的面积.通过观察可知,所求四边形的面积等于矩形OCPD的面积减去△OBD和△OCA的面积,而矩形OCPD的面积可通过的比例系数求得;△OBD和△OCA的面积可通过的比例系数求得,从而用矩形OCPD的面积减去△OBD和△OCA的面积即可求得答案.三、解答题(共78分)19、(1)图见解析;(2),周长为;(3)图见解析.【分析】(1)根据平面直角坐标系点的特征作图即可得出答案;(2)根据等腰三角形的定义计算即可得出答案;(3)根据旋转和位似的性质即可得出答案.【详解】解:(1)如图所示:(2)∵,∴∴周长为;(3)如图所示,即为所求.【点睛】本题考查的是尺规作图,涉及到了两点间的距离公式以及位似的相关性质,需要熟练掌握.20、(1)证明见解析;(2)S阴=.【分析】(1)只要证明∠E=∠D,即可推出CD=CE;

(2)根据S阴=S扇形OBC-S△OBC计算即可解决问题;【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,∴CD=CE.(2)解:由(1)可知:∠ABC=∠E=30°,∠ACB=90°,∴∠CAB=60°,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2,连接OC,则∠COB=120°,∴S阴=S扇形OBC﹣S△OBC=.【点睛】考查扇形的面积,垂径定理,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、x1=2x2=2.【分析】应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.22、【分析】根据平移变换即可作出对应线段,根据平行四边形的性质,平分平行四边形面积的直线经过平行四边形的中心,然后求出AC的中点,代入直线计算即可求出k值.【详解】画图如图所示:点坐标为,点坐标为,的中点坐标为,又直线平分平行四边形的面积,则过点,,.【点睛】本题考查的是作图-平移变换,平行四边形的性质,待定系数法求函数解析式,要注意平分平行四边形面积的直线经过平行四边形的中心的应用.23、(1)200;(2)详见解析;(3);(4)大约有17000名【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200-120-50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1-25%-60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【详解】(1)50÷25%=200;(2)(人).如图,(3)C所占圆心角度数.(4).∴估计该市初中生中大约有17000名学生学习态度达标.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)AB:;CD:;(2)有效时间为2分钟.【解析】分析:(1)、利用待定系数法分别求出函数解析式;(2)、将y=40分别代入两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论