2024年重庆市两江育才中学数学高三上期末考试模拟试题含解析_第1页
2024年重庆市两江育才中学数学高三上期末考试模拟试题含解析_第2页
2024年重庆市两江育才中学数学高三上期末考试模拟试题含解析_第3页
2024年重庆市两江育才中学数学高三上期末考试模拟试题含解析_第4页
2024年重庆市两江育才中学数学高三上期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年重庆市两江育才中学数学高三上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设则以线段为直径的圆的方程是()A. B.C. D.2.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为()A. B. C. D.3.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.4.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.95.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.6.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种7.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.38.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.99.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.10.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.11.已知向量,,若,则()A. B. C.-8 D.812.若,则的虚部是A.3 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.14.若实数,满足不等式组,则的最小值为______.15.已知函数在上单调递增,则实数a值范围为_________.16.若方程有两个不等实根,则实数的取值范围是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.18.(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.19.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.21.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.22.(10分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.2、D【解析】

根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可.【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即.则直线的斜率.故选:D.【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.3、D【解析】

根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.4、A【解析】

先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.5、A【解析】

根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.6、C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.7、C【解析】

建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.8、B【解析】

根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.9、D【解析】

由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.10、B【解析】

先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.11、B【解析】

先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.12、B【解析】

因为,所以的虚部是.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】

由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.14、5【解析】

根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解【详解】画出不等式组,表示的平面区域如图阴影区域所示,令,则.分析知,当,时,取得最小值,且.【点睛】本题考查线性规划问题,属于基础题15、【解析】

由在上恒成立可求解.【详解】,令,∵,∴,又,,从而,令,问题等价于在时恒成立,∴,解得.故答案为:.【点睛】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.16、【解析】

由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】

(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.18、(1).(2)【解析】

(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即.∴.曲线的极坐标方程为.直线的极坐标方程为,即,∴直线的直角坐标方程为.(2)设,,∴,解得.又,∴(舍去).∴.点到直线的距离为,∴的面积为.【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.19、(1)(2)最大值为【解析】

(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,,,,,则当时,取得最大值,最大值为.【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.20、(1)(2)(3)直线平面,证明见解析【解析】

取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,求出平面的一个法向量.(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面.【详解】底面是边长为2的菱形,,为等边三角形.取中点,连接,则,为等边三角形,,又平面平面,且平面平面,平面.以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系.则,,,,1,,,0,,,,,,0,,,,,,,.,,设平面的一个法向量为.由,取,得.(1)证明:设直线与平面所成角为,,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),,又平面,直线平面.【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.21、(1);(2)点在定直线上.【解析】

(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去).所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为.令,,即交轴于点坐标为,所以,,,.设点坐标为,则,所以点在定直线上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论