2023-2024学年河北省保定市二中学分校数学九上期末监测试题含解析_第1页
2023-2024学年河北省保定市二中学分校数学九上期末监测试题含解析_第2页
2023-2024学年河北省保定市二中学分校数学九上期末监测试题含解析_第3页
2023-2024学年河北省保定市二中学分校数学九上期末监测试题含解析_第4页
2023-2024学年河北省保定市二中学分校数学九上期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省保定市二中学分校数学九上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,是的直径,点,在上,若,则的度数为()A. B. C. D.2.如图,在△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,下列说法正确的是()A.点O是△ABC的内切圆的圆心B.CE⊥ABC.△ABC的内切圆经过D,E两点D.AO=CO3.已知⊙O的半径为4,圆心O到弦AB的距离为2,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150° D.60°或120°4.在反比例函数图像的每一条曲线上,y都随x的增大而增大,则b的取值范围是()A.b=3 B. C. D.5.如图,、、、是上的四点,,,则的度数是()A. B. C. D.6.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米7.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+28.如图,已知.按照以下步骤作图:①以点为圆心,以适当的长为半径作弧,分别交的两边于,两点,连接.②分别以点,为圆心,以大于线段的长为半径作弧,两弧在内交于点,连接,.③连接交于点.下列结论中错误的是()A. B.C. D.9.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm10.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y211.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<212.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°二、填空题(每题4分,共24分)13.如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是__________.(结果保留根号和)14.若,则的值为_____.15.把抛物线向上平移2个单位,所得的抛物线的解析式是__________.16.函数y=的自变量x的取值范围是_______________.17.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.18.若一元二次方程有一根为,则_________.三、解答题(共78分)19.(8分)某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.20.(8分)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.21.(8分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.(10分)如图,在△ABC中,利用尺规作图,画出△ABC的内切圆.23.(10分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.24.(10分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果;(2)求小明恰好抽中、两个项目的概率.25.(12分)如图,为的直径,为上一点,,延长至点,使得,过点作,垂足在的延长线上,连接.(1)求证:是的切线;(2)当时,求图中阴影部分的面积.26.如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】先根据圆周角定理求出∠ACD的度数,再由直角三角形的性质可得出结论.【详解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直径,

∴∠ACB=90°.

∴∠BCD=∠ACB-∠ACD=90°-40°=50°.

故选:C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.2、A【分析】由∠BAC的平分线AD与∠ACB的平分线CE交于点O,得出点O是△ABC的内心即可.【详解】解:∵△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,∴点O是△ABC的内切圆的圆心;故选:A.【点睛】本题主要考察三角形的内切圆与内心,解题关键是熟练掌握三角形的内切圆性质.3、D【分析】根据题意作出图形,利用三角形内角和以及根据圆周角定理和圆内接四边形的性质进行分析求解.【详解】解:如图,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圆内接四边形的性质),即弦AB所对的圆周角的度数是60°或120°.故选:D.【点睛】本题考查圆周角定理,圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、C【分析】由反比例函数的图象的每一条曲线上,y都随x的增大而增大,可得3-b<0,进而求出答案,作出选择.【详解】解:∵反比例函数的图象的每一条曲线上,y都随x的增大而增大,∴3-b<0,∴b>3,故选C.【点睛】考查反比例函数的性质和一元一次不等式的解法,掌握反比例函数的性质是解决问题的关键.5、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.6、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学计数法得:.故选:B.【点睛】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.7、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.8、C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:是的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.9、B【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.10、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.11、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.二、填空题(每题4分,共24分)13、【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.【详解】解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE∵四边形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=cm∴AF为圆的直径∵,圆的半径为2,∴AF=4cm在Rt△ABF中sin∠AFB=,BF=∴∠AFB=60°,FC=BC-BF=∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·AO=,AG=cos∠EAF·AO=1cm根据垂径定理,AE=2AG=2cm∴S阴影=S梯形AFCD-S△AOE-S扇形EOF===故答案为:.【点睛】此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.14、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.15、【分析】根据题意直接运用平移规律“左加右减,上加下减”,在原式上加2即可得新函数解析式即可.【详解】解:∵向上平移2个单位长度,∴所得的抛物线的解析式为.故答案为.【点睛】本题主要考查二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16、x≥3【分析】分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据二次根式有意义,分式有意义得:x-3≥0且x+1≠0,解得:x≥3故答案为x≥3【点睛】本题考查函数自变量的取值范围,基础知识扎实是解题关键17、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.18、1【分析】直接把x=−1代入一元二次方程中即可得到a+b的值.【详解】解:把x=−1代入一元二次方程得,所以a+b=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题(共78分)19、(1)60;(2)该农场在第三、第四季度产值的平均下降百分率为【分析】(1)根据题意,第二季度的产值=第一季度的产值×(1+20%),把数代入求解即可;

(2)本题可设该农场第三、四季度的产值的平均下降的百分率为x,则第三季度的产值为60(1-x)万元,第四季度的产值为60(1-x)2万元,由此可列出方程,进而求解.【详解】解:(1)第二季度的产值为:(万元);(2)设该农场在第三、第四季度产值的平均下降的百分率为,根据题意得:该农场第四季度的产值为(万元),列方程,得:,即,解得:(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为.【点睛】此类题目旨在考查下降率,要注意下降的基础,另外还要注意解的合理性,从而确定取舍.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20、(1)抛物线的解析式为y=x1-x-1顶点D的坐标为(,-).(1)△ABC是直角三角形,理由见解析;(3).【解析】(1)把点A坐标代入抛物线即可得解析式,从而求得顶点坐标;(1)分别计算出三条边的长度,符合勾股定理可知其是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,1),OC′=1,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.【详解】解:(1)∵点A(-1,0)在抛物线y=x1+bx-1上∴×(-1)1+b×(-1)–1=0解得b=∴抛物线的解析式为y=x1-x-1.y=x1-x-1=(x1-3x-4)=(x-)1-,∴顶点D的坐标为(,-).(1)当x=0时y=-1,∴C(0,-1),OC=1.当y=0时,x1-x-1=0,∴x1=-1,x1=4∴B(4,0)∴OA=1,OB=4,AB=5.∵AB1=15,AC1=OA1+OC1=5,BC1=OC1+OB1=10,∴AC1+BC1=AB1.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,1),OC′=1,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y=kx+n,则,解得n=1,.∴.∴当y=0时,,∴.21、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴抛物线的解析式为y=﹣x1+x+1.(1)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(1,0),∴0<m<1.∵点P的横坐标为m,∴点P的坐标为(m,﹣m1+m+1),点E的坐标为(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(1)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.【点睛】本题考查二次函数图像的综合问题,解题关键是熟练掌握待定系数法求解析式、函数的思想求最大值以及平行四边形的性质及平移规律等知识.22、见解析【分析】分别作出三角形两个内角的角平分线,交点即为三角形的内心,也就是三角形内切圆的圆心,进而得出即可.【详解】如图所示【点睛】此题主要考查了复杂作图,正确把握三角形内心位置确定方法是解题关键.23、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面积求得m=﹣16,得到反比例函数的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函数的解析式;(2)由一次函数的解析式求得B的坐标为(0,1),根据题意OF=8,C点的纵坐标为8,代入反比例函数的解析式求得横坐标,得到C的坐标,根据C、D的坐标结合图象即可求得不等式kx+b≤的解集.【详解】解:(1)∵CE⊥x轴,CF⊥y轴,∵四边形OECF的面积为16,∴|m|=16,∵双曲线位于二、四象限,∴m=﹣16,∴反比例函数表达式为y=,将x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1将D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函数的表达式为y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,将y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集为﹣2≤x<0或x≥1.【点睛】本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.24、(1)见解析;(2).【分析】(1)画树状图得出所有等可能结果;(2)从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)画树状图如下:(2)由树状图知共有6种等可能结果,其中小明恰好抽中B、D两个项目的只有1种情况,

所以小明恰好抽中B、D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论