版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省珠海市十一中学九年级数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()A.米 B.米 C.米 D.米2.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.3.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A.3 B.4 C.5 D.64.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.65.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件6.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.7.如图,一艘快艇从O港出发,向东北方向行驶到A处,然后向西行驶到B处,再向东南方向行驶,共经过1小时到O港,已知快艇的速度是60km/h,则A,B之间的距离是()A. B. C. D.8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.下列事件中为必然事件的是()A.抛一枚硬币,正面向上 B.打开电视,正在播放广告C.购买一张彩票,中奖 D.从三个黑球中摸出一个是黑球10.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.411.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60° B.65° C.70° D.75°12.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为___.14.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为_____.15.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.16.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.17.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)18.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.三、解答题(共78分)19.(8分)如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)20.(8分)已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.21.(8分)定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A=度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.22.(10分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.求今年这种玩具的每件利润元与之间的函数关系式.设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.23.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.24.(10分)在平面直角坐标系中(如图),已知二次函数(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.25.(12分)如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.26.如图,二次函数(a0)与x轴交于A、C两点,与y轴交于点B,P为抛物线的顶点,连接AB,已知OA:OC=1:3.(1)求A、C两点坐标;(2)过点B作BD∥x轴交抛物线于D,过点P作PE∥AB交x轴于E,连接DE,①求E坐标;②若tan∠BPM=,求抛物线的解析式.
参考答案一、选择题(每题4分,共48分)1、A【分析】利用坡角的正弦值即可求解.【详解】解:∵∠ACB=90°,∠A=α,AB=600,∴sinα=,∴BC=600sinα.
故选A.【点睛】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.2、B【分析】根据概率公式即可得出答案.【详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、D【分析】首先证明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解决问题.【详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【点睛】此题考查平行线分线段成比例,由DE∥BC,可得,求出EC即可解决问题.4、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.5、D【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B.任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C.一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.6、D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.7、B【分析】根据∠AOD=45°,∠BOD=45°,AB∥x轴,△AOB为等腰直角三角形,OA=OB,利用三角函数解答即可.【详解】∵∠AOD=45°,∠BOD=45°,∴∠AOD=90°,∵AB∥x轴,∴∠BAO=∠AOC=45°,∠ABO=∠BOD=45°,∴△AOB为等腰直角三角形,OA=OB,∵OB+OA+AB=60km,∵OB=OA=AB,∴AB=,故选:B.【点睛】本题考查了等腰直角三角形,解决本题的关键是熟悉等腰直角三角形的性质.8、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A,B,C选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D是必然事件,符合题意.故选:D.【点睛】本题考查必然事件的定义,熟练掌握定义是关键.10、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.11、C【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.12、C【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下可得出a<1,结合抛物线对称轴为x=-=1,可得出b=-2a,将b=-2a代入2a+b中,结合a<1即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(-1,1)代入抛物线解析式中,再结合b=-2a即可得出a的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.【详解】解:①由抛物线的对称性可知:
抛物线与x轴的另一交点横坐标为1×2-(-1)=2,
即点B的坐标为(2,1),
∴当x=2时,y=1,①正确;
②∵抛物线开口向下,
∴a<1.
∵抛物线的顶点坐标为(1,n),
∴抛物线的对称轴为x=-=1,
∴b=-2a,
2a+b=a<1,②不正确;
③∵抛物线与y轴的交点在(1,2)、(1,2)之间(包含端点),
∴2≤c≤2.
令x=-1,则有a-b+c=1,
又∵b=-2a,
∴2a=-c,即-2≤2a≤-2,
解得:-1≤a≤-,③正确;
④∵抛物线的顶点坐标为,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,
∴n=c-a,≤n≤4,④正确.
综上可知:正确的结论为①③④.
故选C.【点睛】本题考查了二次函数图象与系数的关系,解决该题型题目时,利用二次函数的系数表示出来抛物线的顶点坐标是关键.二、填空题(每题4分,共24分)13、【详解】解:连接BE∵⊙的半径,AB=2∴且,若设⊙的半径为,则.在△ACO中,根据勾股定理有,即,解得:.∴.∵是⊙的直径,∴.故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.14、(0,﹣5)【分析】要求抛物线与y轴的交点,即令x=0,解方程.【详解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与轴的交点坐标,正确掌握令或令是解题的关键.15、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:
3000(1+x)2=1,
故答案为:3000(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.16、22.5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依题意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的宽度为22.5米.17、7.6【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.18、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m三、解答题(共78分)19、(1)见解析;(2)见解析;(3)见解析.【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:20、(1)m<且m≠0;(2)点P(1,1)在抛物线上;(3)抛物线的顶点Q的坐标为(–,–).【分析】(1)与x轴有两个不同的交点即令y=0,得到的一元二次方程的判别式△>0,据此即可得到不等式求解;(2)把点(1,1)代入函数解析式判断是否成立即可;(3)首先求得函数解析式,化为顶点式,可求得顶点坐标.【详解】(1)由题意得,(3–2m)2–4m(m–2)>0,m≠0,解得,m<且m≠0;(2)当x=1时,mx2+(3–2m)x+m–2=m+(3–2m)+m–2=1,∴点P(1,1)在抛物线上;(3)当m=1时,函数解析式为:y=x2+x–1=(x+)2–,∴抛物线的顶点Q的坐标为(–,–).【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,则二次函数与x轴有一个交点;如果△<0,则二次函数与x轴无交点.21、(1)20;(2)①见解析;②存在,CE=;(3)tan∠C的值为或.【分析】(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°;(2)①如图1,设∠=ABD∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如图2所示,当∠ABD=∠DBC=β时,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如图3所示,当∠ABD=∠C=β时,AF∶EF=AG∶GE=2∶3,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【详解】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠=ABD∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=1,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=1﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF∶EF=AG∶GE=2∶3,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,则cos∠ABD=cosβ===cosC,则tanC=;综上,tan∠C的值为或.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质,三角函数值等知识.属于圆的综合题,解决本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.22、10+7x12+6x【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10×0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12×0.5x)元/件;
(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)-(10+7x),然后整理即可;
(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量,得到w=2(1+x)(2-x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【详解】⑴①10+7x②12+6x⑵y=(12+6x)-(10+7x)y=2-x⑶∵w=2(1+x)(2-x)=-2x2+2x+4∴w=-2(x-0.5)2+4.5∵-2<0,0<x≤11,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点睛】本题考查了二次函数的应用,解题的关键是根据题意列出方程进行求解.23、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.24、(1);(2);(3)E(2,)【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此抛物线的表达式是:.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则,又∵DH//y轴,∴.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得,解得,∴直线AF的解析式为:,将x=2代入直线AF的解析式得:,∴E(2,).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.25、(1);(2),当时,有最大值,最大值;(2),【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x-2),将点C(0,2)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)设直线BC的函数解析式为y=kx+b.结合点B、点C的坐标利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m找出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式求出函数解析式,利用配方法将S关于m的函数关系式进行变形,从而得出结论;(2)先求出对称轴,设M(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年分手财产清算协议范本
- 基于数智技术的研究生教育治理结构创新
- 2024建筑工程中介服务协议协议
- 危险废弃物处理行业未来发展趋势
- 高低压开关柜行业未来的战略发展方向
- 德育评估的内容与方法
- 充电桩安装及维护服务协议文本
- 场地租赁协议:多功能厅租赁规范
- 2024年化工园区租赁协议精简
- 《模板施工技术》课件
- 扬州邗江区2023-2024六年级英语上册期中试卷及答案
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
- 2024年燕舞集团限公司公开招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 互联网+远程问诊
- 2024年仓储与配送管理形成性考核答案大揭秘
- 旅行社行业发展前景与机遇展望报告
- 项目组织管理机构及人员配备(完整版)
- 机械设备:低空经济系列报告(一):他山之石-Joby的前世今生
- 信息化作战平台
- 眩晕病个案护理
- 《Python程序设计案例教程》 课件 4.3字典
评论
0/150
提交评论