2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题含解析_第1页
2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题含解析_第2页
2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题含解析_第3页
2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题含解析_第4页
2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省牡丹江一中学九年级数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.2.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.3.下表是一组二次函数的自变量x与函数值y的对应值:

1

1.1

1.2

1.3

1.4

-1

-0.49

0.04

0.59

1.16

那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.34.下列命题正确的是(

)A.圆是轴对称图形,任何一条直径都是它的对称轴B.平分弦的直径垂直于弦,并且平分弦所对的弧C.相等的圆心角所对的弧相等,所对的弦相等D.同弧或等弧所对的圆周角相等5.一次函数y=bx+a与二次函数y=ax2+bx+c(a0)在同一坐标系中的图象大致是()A. B. C. D.6.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.7.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15 B.10 C.7.5 D.58.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°9.已知下列命题:①若,则;②当时,若,则;③直角三角形中斜边上的中线等于斜边的一半;④矩形的两条对角线相等.其中原命题与逆命题均为真命题的个数是()A.个 B.个 C.个 D.个10.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.1011.如图,在平面直角坐标系中,在轴上,,点的坐标为,绕点逆时针旋转,得到,若点的对应点恰好落在反比例函数的图像上,则的值为()A.4. B.3.5 C.3. D.2.512.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是__________.14.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.15.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为.16.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.17.若正六边形的边长为2,则此正六边形的边心距为______.18.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.三、解答题(共78分)19.(8分)如图,A(8,6)是反比例函数y=(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=的图象于点M(1)求反比例函数y=的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣≤0的解集.20.(8分)如图,在东西方向的海面线上,有,两艘巡逻船和观测点(,,在直线上),两船同时收到渔船在海面停滞点发出的求救信号.测得渔船分别在巡逻船,北偏西和北偏东方向,巡逻船和渔船相距120海里,渔船在观测点北偏东方向.(说明:结果取整数.参考数据:,.)(1)求巡逻船与观测点间的距离;(2)已知观测点处45海里的范围内有暗礁.若巡逻船沿方向去营救渔船有没有触礁的危险?并说明理由.21.(8分)计算:2cos45°﹣tan60°+sin30°﹣tan45°22.(10分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.23.(10分)在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.24.(10分)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点,取EF中点G,连接DG并延长交AB于点M,延长EF交AC于点N。(1)求证:∠FAB和∠B互余;(2)若N为AC的中点,DE=2BE,MB=3,求AM的长.25.(12分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.26.在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.(1)随机地从箱子里取出一个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.

参考答案一、选择题(每题4分,共48分)1、B【解析】列表得:

1

2

3

4

1

2+1=3

3+1=4

4+1=5

2

1+2=3

3+2=5

4+2=6

3

1+3=4

2+3=5

4+3=7

4

1+4=5

2+4=6

3+4=7

∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:.故选B.2、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;

∵Rt△ABC中,∠ACB=90°,CD⊥AB,

∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;

故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.3、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.4、D【分析】根据圆的对称性、圆周角定理、垂径定理逐项判断即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,其对称轴是直径所在的直线或过圆心的直线,此命题不正确;B.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,此命题不正确;C.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,此命题不正确;D.同弧或等弧所对的圆周角相等,此命题正确;故选:D.【点睛】本题考查的知识点是圆的对称性、圆周角定理以及垂径定理,需注意的是对称轴是一条直线并非是线段,而圆的两条直径互相平分但不一定垂直.5、C【解析】A.由抛物线可知,a>0,x=−<0,得b<0,由直线可知,a>0,b>0,故本选项错误;B.由抛物线可知,a>0,x=−>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选C.6、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、D【分析】首先证明△BAD∽△BCA,由相似三角形的性质可得:△BAD的面积:△BCA的面积为1:4,得出△BAD的面积:△ACD的面积=1:3,即可求出△ABD的面积.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.8、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9、B【分析】先写出每个命题的逆命题,再分别根据绝对值的意义、不等式的性质、直角三角形的性质和判定、矩形的性质和判定依次对各命题进行判断即可.【详解】解:①的原命题:若,则,是假命题;①的逆命题:若,则,是真题,故①不符合题意;②的原命题:当时,若,则,根据不等式的基本性质知该命题是真命题;②的逆命题:当时,若,则,也是真命题,故②符合题意;③的原命题:直角三角形中斜边上的中线等于斜边的一半,是真命题;③的逆命题:一边上的中线等于这边的一半的三角形是直角三角形,也是真命题,故③符合题意;④的原命题:矩形的两条对角线相等,是真命题;④的逆命题:对角线相等的四边形是矩形,是假命题,故④不符合题意.综上,原命题与逆命题均为真命题的是②③,共个,故选B.【点睛】本题考查了命题和定理、实数的绝对值、不等式的性质、直角三角形的性质和判定、矩形的性质和判定等知识,属于基本题目,熟练掌握以上基本知识是解题的关键.10、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.11、C【分析】先通过条件算出O’坐标,代入反比例函数求出k即可.【详解】由题干可知,B点坐标为(1,0),旋转90°后,可知B’坐标为(3,2),O’坐标为(3,1).∵双曲线经过O’,∴1=,解得k=3.故选C.【点睛】本题考查反比例函数图象与性质,关键在于坐标平面内的图形变换找出关键点坐标.12、A【解析】根据位似的性质解答即可.【详解】解:∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,∴点P在A′C′上的对应点P′的的坐标为:(4,3).故选A.【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而结合已知得出答案.二、填空题(每题4分,共24分)13、【分析】先根据坡比求出AB的长度,再利用勾股定理即可求出BC的长度.【详解】故答案为:.【点睛】本题主要考查坡比及勾股定理,掌握坡比的定义及勾股定理是解题的关键.14、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,

∴黑色方砖在整个地板中所占的比值,

∴小球最终停留在黑色区域的概率是,故答案为:.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.15、【分析】直接分类讨论得出x的取值范围,进而解方程得出答案.【详解】解:当1x>x﹣1时,故x>﹣1,则1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;当1x<x﹣1时,故x<﹣1,则x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合题意舍去),x4=﹣1(不合题意舍去),综上所述:方程max{1x,x﹣1}=x1﹣4的解为:x1=1+,x1=1﹣.故答案为:x1=1+,x1=1﹣.【点睛】考核知识点:一元二次方程.理解规则定义是关键.16、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,

∵四边形ABCD是正方形,BC=3BE,BC=3,

∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,

∴△ABE∽△MCE,

∴,

∴CM=2AB=6,

即DM=3+6=9,

由勾股定理得:,

∵AF平分∠DAE,

∴,

∴,

解得:,

∵AF平分∠DAE,∠D=90°,

∴点F到AE的距离=,

故答案为:.【点睛】本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.17、.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.18、不具有【分析】根据抽取样本的注意事项即要考虑样本具有广泛性与代表性,其代表性就是抽取的样本必须是随机的,以此进行分析.【详解】解:要估计全市九年级学生早读时间情况,应从该市所以学校九年级中随机抽取100人进行调查,所以在这个问题中调查的样本不具有代表性.故此空填“不具有”.【点睛】本题考查抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.三、解答题(共78分)19、(1)y=;(2)M(1,4);(3)0<x≤8或x≥1.【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB=OA=10,由AB∥x轴即可得点B的坐标,即可求得直线OB的解析式,然后联立方程求得点M的坐标;(3)根据A、M点的坐标,结合图象即可求得.【详解】解:(1)∵A(8,6)在反比例函数图象上∴6=,即m=48,∴反比例函数y=的表达式为y=;(2)∵A(8,6),作AC⊥x轴,由勾股定理得OA=10,∵AB=OA,∴AB=10,∴B(18,6),设直线OB的关系式为y=kx,∴6=18k,∴k=,∴直线OB的关系式为y=x,由,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b﹣≤0的解集为:0<x≤8或x≥1.【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.20、(1)76海里;(2)没有触礁的危险,理由见解析【分析】(1)作.根据直角三角形性质求AE,CE,AB,再证.所以.(2)作.证BF=DF,由BF2+DF2=BD2可求解.【详解】解:(1)作.因为渔船分别在巡逻船,北偏西和北偏东方向,所以∠CAE=60°,∠CBE=45°所以∠ACE=30°,∠ACB=180°-60°-45°=75°;所以(海里),(海里).所以.因为渔船在观测点北偏东方向.所以∠CDE=75〬所以∠CDE=∠ACB,所以.所以.即.解得,.∴海里.(2)没有触礁的危险.作.因为∠CBD=45°所以BF=DF所以BF2+DF2=BD2即DF2+DF2=762可求得.∵,∴没有触礁的危险.【点睛】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.21、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-【点睛】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.22、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO,根据平行线的性质得出∠DAO=∠COB,∠ADO=∠COD,结合OA=OD得出∠COD=∠COB,从而得出△COD和△COB全等,从而得出切线;(2)、设⊙O的半径为R,则OD=R,OE=R+1,根据Rt△ODE的勾股定理求出R的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半径为1.23、(1)2,;(2)①是⊙的切线,;②或.【分析】(1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可.(2)①连接DF,DE,作DH⊥AB于H.设OC=x.首先证明∠CBO=30,再证明DH=DE即可证明是⊙的切线,再求出OE,DE的长即可求出点D的坐标.②根据,得到不等式组解决问题即可.【详解】(1)∵A(0,1),C(3,4),⊙C的半径为2,∴d(C,⊙C)=2,d(O,⊙C)=AC−2=,故答案为2;;(2)①连接,作于.设.∵,∴,解得,∴,∴,,∵是⊙的切线,∴平分,∴,∴,∵,∴,∴,∴是⊙的切线.∵,设,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案为:或.【点睛】本题属于圆综合题,考查了图形M,N间的“和睦距离”,解直角三角形的应用,切线的判定和性质,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.24、(1)见解析;(2)AM=7【解析】(1)根据等腰三角形三线合一可证得AD⊥BC,根据直角三角形两锐角互余可证得结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得DG=GE即可得∠GDE=∠GED,证明△DBM∽△ECN,根据相似三角形的性质即可求得NC,继而可求AM.【详解】解:(1)∵AB=AC,AD为∠BAC的角平分线,∴AD⊥BC,∴∠FAB+∠B=90°.(2)∵AB=AC,AD是△ABC的角平分线,

∴BD=CD,

∵DE=2BE,

∴BD=CD=3BE,

∴CE=CD+DE=5BE,

∵∠EDF=90°,点G是EF的中点,

∴DG=GE,

∴∠GDE=∠GED,

∵AB=AC,

∴∠B=∠C,∴△DBM∽△ECN,∵MB=3,

∴NC=5,

∵N为AC的中点,

∴AC=2C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论