2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题含解析_第1页
2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题含解析_第2页
2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题含解析_第3页
2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题含解析_第4页
2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省郑州市桐柏一中学数学九年级第一学期期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上2.已知是方程的一个解,则的值是()A.±1 B.0 C.1 D.-13.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)4.在中,=90〫,,则的值是()A. B. C. D.5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4) B.(6,2) C.(4,4) D.(8,4)6.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥07.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.8.若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是()A. B. C. D.9.如图,以点为位似中心,将放大得到.若,则与的位似比为().A. B. C. D.10.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.70° B.65° C.55° D.35°11.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.12.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.14.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.15.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD=.16.如图,△ABC是⊙O的内接三角形,∠A=120°,过点C的圆的切线交BO于点P,则∠P的度数为_____.17.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是_____.(把你认为正确结论的序号都填上)18.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_________________.三、解答题(共78分)19.(8分)某旅馆一共有客房30间,在国庆期间,老板通过观察记录发现,当所有房间都有旅客入住时,每间客房净赚600元,客房价格每提高50元,则会少租出去1个房间.同时没有旅客入住的房间,需要花费50元来进行卫生打理.(1)求出每天利润w的最大值,并求出利润最大时,有多少间客房入住了旅客.(2)若老板希望每天的利润不低于19500元,且租出去的客房数量最少,求出此时每间客房的利润.20.(8分)如图,在△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,连接OD,点E在BC上,BE=DE.(1)求证:DE是⊙O的切线;(2)若BC=6,求线段DE的长;(3)若∠B=30°,AB=8,求阴影部分的面积(结果保留).21.(8分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.22.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.23.(10分)如图是由两个长方体组成的几何体,这两个长方体的底面都是正方形,画出图中几何体的主视图、左视图和俯视图.24.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.25.(12分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.26.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y﹤0?(2)点p是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,

所以不管抛多少次,硬币正面朝上的概率都是,

所以掷一枚质地均匀的硬币10次,

可能有7次正面向上;

故选:C.【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.2、A【分析】利用一元二次方程解得定义,将代入得到,然后解关于的方程.【详解】解:将代入得到,解得故选A【点睛】本题考查了一元二次方程的解.3、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,

∵点B的坐标为(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴点B1的坐标为(2,-4),

故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.4、A【分析】根据同角三角函数关系:+求解.【详解】解:在Rt△ABC中,∠C=90°,,∵+,∴,∴=故选:A【点睛】本题考查了同角三角函数的关系的应用,能知道是解题的关键.5、A【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.6、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.7、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.8、C【分析】首先判断a、b的符号,再一一判断即可解决问题.【详解】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,故A错误;,故B错误;a2+b>0,故C正确,a+b不一定大于0,故D错误.故选:C.【点睛】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9、A【解析】以点为个位中心,将放大得到,,可得,因此与的位似比为,故选A.10、A【解析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC绕点C逆时针旋转α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故选:A.【点睛】本题考查旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是解此题的关键.11、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.12、B【分析】从题中可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案.【详解】从,-6,1.2,π,中可以知道

π和为无理数.其余都为有理数.

故从数据,-6,1.2,π,中任取一数,则该数为无理数的概率为,

故选:B.【点睛】此题考查概率的计算方法,无理数的识别.解题关键在于掌握:概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、3500【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】由10户家庭一周内使用环保方便袋的数量可知平均每户一周使用的环保方便袋的数量为则该小区500户家庭一周内需要环保方便袋约为,故答案为3500.【点睛】本题考查的是样本平均数的求法与意义,能够知道平均数的计算方法是解题的关键.14、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.15、3.2.【详解】解:∵∠ACB=90°,AB=20,BC=6,∴.设AD=2x,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A2,点E的对应点为E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2•BE2.∴,解得x=2.6或x=0(舍去).∴AD的长为2×2.6=3.2.16、30°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°−∠A=60°,由等腰三角形的性质得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性质即可得出结果.【详解】如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°−∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°−2×60°=60°,∴∠P=90°−∠DOC=30°;故填:30°.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.17、①②③④【分析】①延长CO交⊙O于点G,如图1.在Rt△BGC中,运用三角函数就可解决问题;②只需证到△BEF≌△CEA即可;③易证△AEC∽△ADB,则,从而可证到△AED∽△ACB,则有.由∠A=60°可得到,进而可得到ED=;④取BC中点H,连接EH、DH,根据直角三角形斜边上的中线等于斜边的一半可得EH=DH=BC,所以线段ED的垂直平分线必平分弦BC.【详解】解:①延长CO交⊙O于点G,如图1.则有∠BGC=∠BAC.∵CG为⊙O的直径,∴∠CBG=90°.∴sin∠BGC=.∴∠BGC=60°.∴∠BAC=60°.故①正确.②如图2,∵∠ABC=25°,CE⊥AB,即∠BEC=90°,∴∠ECB=25°=∠EBC.∴EB=EC.∵CE⊥AB,BD⊥AC,∴∠BEC=∠BDC=90°.∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.∵∠EFB=∠DFC,∴∠EBF=∠DCF.在△BEF和△CEA中,,∴△BEF≌△CEA.∴AE=EF.故②正确.③如图3,∵∠AEC=∠ADB=90°,∠A=∠A,∴△AEC∽△ADB.∴.∵∠A=∠A,∴△AED∽△ACB.∴.∵cosA==cos60°=,∴.∴ED=BC=.故③正确.④取BC中点H,连接EH、DH,如图3、图2.∵∠BEC=∠CDB=90°,点H为BC的中点,∴EH=DH=BC.∴点H在线段DE的垂直平分线上,即线段ED的垂直平分线平分弦BC.故④正确.故答案为①②③④.【点睛】本题考查了圆周角定理、锐角三角函数的定义、特殊角的三角函数值、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、到线段两个端点距离相等的点在线段的垂直平分线上等知识,综合性比较强,是一道好题.18、公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA2=OA=6,过A2作A2D⊥OA1从而得出A2D=3即可.【详解】如图:可得(公分)∵AB=10(公分),∴(公分)过A2作A2D⊥OA1,∵(公分)∴钟面显示点分时,点距桌面的高度为:(公分).故答案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出∠A2OA1=30°,进而得出A2D=3,是解决问题的关键.三、解答题(共78分)19、(1)21600元,8或9间;(2)15间,1元【分析】(1)设每个房间价格提高50x元,可列利润w=(30﹣x)(600+50x)﹣50x,将此函数配方为顶点式,即可得到答案;(2)将(1)中关系式﹣50x2+850x+18000=19500,求出x的值,由租出去的客房数量最少即(30﹣x)最小,得到x取最大值15,再代入利润关系式求得每间客房的利润即可.【详解】解:(1)设每个房间价格提高50x元,则租出去的房间数量为(30﹣x)间,由题意得,利润w=(30﹣x)(600+50x)﹣50x=﹣50x2+850x+18000=﹣50(x﹣8.5)2+21612.5因为x为正整数所以当x=8或9时,利润w有最大值,wmax=21600;(2)当w=19500时,﹣50x2+850x+18000=19500解得x1=2,x2=15,∵要租出去的房间最少∴x=15,此时每个房间的利润为600+50×15=1.【点睛】此题考查二次函数的实际应用,正确理解题意列得函数关系式是解题的关键,注意(1)x应为正整数,故而x应为对称轴x=8.5两侧的整数8或9.20、(1)详见解析;(2)3;(3)【分析】(1)根据OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根据∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,从而可证明结论;(2)连接CD,根据现有条件推出CE是⊙O的切线,再结合DE是⊙O的切线,推出DE=CE又BE=DE,即可得出DE;(3)过O作OG⊥AD,垂足为G,根据已知条件推出AD,AG和OG的值,再根据,即可得出答案.【详解】解:(1)证明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD为⊙O的半径,∴DE是⊙O的切线;(2)连接CD,则∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC为⊙O的直径,∴CE是⊙O的切线,又DE是⊙O的切线,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)过O作OG⊥AD,垂足为G,则,∵Rt△ABC中,∠B=30°,AB=8,∴AC=,∠A=60°(又OA=OD),∴∠COD=120°,△AOD为等边三角形,∴AD=AO=OD=2,∴,∴OG,∴,∴阴影部分的面积为.【点睛】本题考查了圆的切线的性质和判定,三角函数和等边三角形的性质,掌握知识点是解题关键.21、∠CAE=20°.【分析】根据等边对等角求出∠BAD,从而求出∠ADC,在等腰三角形ADC中,由三线合一求出∠CAE.【详解】∵BD=AD,∴∠BAD=∠B=35°,∴∠ADE=∠BAD+∠B=70°,∵AD=AC,∴∠C=∠ADE=70°,∵AD=AC,AE平分DC,∴AE⊥EC,(三线合一).∴∠EAC=90°-∠C=20°.【点睛】本题的解题关键是掌握等边对等角和三线合一.22、(1)证明见解析;(2)6π.【分析】(1)连接,交于,由可知,,又,四边形为平行四边形,则,由圆周角定理可知,由内角和定理可求,即可得证结论.(2)证明,将阴影部分面积问题转化为求扇形的面积求解.【详解】连接交于点,如图:∵∴∴在中,∴∵∴∴是的切线(2)由(1)可知,在和中,∴∴∴【点睛】本题考查了圆周角定理、平行线的判定、平行四边形的判定和性质、切线的判定和性质、垂径定理、扇形面积的计算以及转换思想和数形结合思想的应用,熟悉各知识点内容是推理论证的前提.23、如图所示见解析.【分析】从正面看,下面一个长方形,上面左边一个长方形;从左面看,下面一个长方形,上面左边一个长方形;从上面看,一个正方形左上角一个小正方形,依此画出图形即可.【详解】如图所示.【点睛】此题考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.24、(1)作图见解析;(2)【解析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.25、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论