版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年北京市东城区第六十六中学九年级数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若关于的一元二次方程有两个实数根则的取值范围是()A. B.且 C.且 D.2.的半径为,弦,,,则、间的距离是:()A. B. C.或 D.以上都不对3.已知二次函数自变量的部分取值和对应函数值如表:…-2-10123……-503430…则在实数范围内能使得成立的取值范围是()A. B. C. D.或4.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.5.若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则k的值为()A.-2 B.12 C.6 D.-66.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A. B. C. D.7.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC8.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留).()A. B. C. D.9.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.10.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm二、填空题(每小题3分,共24分)11.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.12.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.13.若点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是_____.14.如图,过上一点作的切线,与直径的延长线交于点,若,则的度数为__________.15.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.16.如图,矩形ABCD绕点A旋转90°,得矩形,若三点在同一直线上,则的值为_______________17.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.18.如图,的中线、交于点,点在边上,,那么的值是__________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.20.(6分)如图,在△ABC中,AB=AC,M为BC的中点,MH⊥AC,垂足为H.(1)求证:;(2)若AB=AC=10,BC=1.求CH的长.21.(6分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?22.(8分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?23.(8分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.25.(10分)如图,在梯形中,,,是延长线上的点,连接,交于点.(1)求证:∽(2)如果,,,求的长.26.(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式组,解之即可得出结论.【详解】解:关于的一元二次方程有两个不相等的实数根,,解得:且.故选:C.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△,列出关于的一元一次不等式组是解题的关键.2、C【分析】先根据勾股定理求出OE=6,OF=8,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.【详解】如图,过点O作OF⊥CD于F,交AB于点E,∵,∴OE⊥AB,在Rt△AOE中,OA=10,AE=AB=8,∴OE=6,在Rt△COF中,OC=10,CF=CD=6,∴OF=8,当AB、CD在点O的同侧时,、间的距离EF=OF-OE=8-6=2;当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=6+8=14,故选:C.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.3、C【分析】根据y=0时的两个x的值可得该二次函数的对称轴,根据二次函数的对称性可得x=4时,y=5,根据二次函数的增减性即可得图象的开口方向,进而可得答案.【详解】∵,∴,∵x=-1时,y=0,x=3时,y=0,∴该二次函数的对称轴为直线x==1,∵1-3=-2,1+3=4,∴当时的函数值与当时的函数值相等,∵时,,∴时,,∵x>1时,y随x的增大而减小,x<1时,y随x的增大而增大,∴该二次函数的开口向下,∴当时,,即,故选:C.【点睛】本题考查二次函数的性质,正确提取表中信息并熟练掌握二次函数的性质是解题关键.4、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【点睛】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.5、D【分析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数y=(k≠0)的图象经过点(-2,3),
∴k=-2×3=-1.
故选:D.【点睛】此题考查了反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6、D【解析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【详解】∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选D.【点睛】本题考查了圆周角定理及解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.7、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.8、A【分析】根据勾股定理求得AB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,OB=6米,∴AB=10米,
∴圆锥的底面周长=2×π×6=12π米,
∴S扇形=lr=×12π×10=60π(米2).
故选:A.【点睛】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,熟知圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9、D【解析】试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.10、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.二、填空题(每小题3分,共24分)11、4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.12、25【详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.13、(4,﹣2).【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是:(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查点的对称,熟记口诀:关于谁对称,谁不变,另一个变号,关于原点对称,两个都变号.14、26°【分析】连接OC,利用切线的性质可求得∠COD的度数,然后利用圆周角定理可得出答案.【详解】解:连接OC,
∵CD与⊙O相切于点D,与直径AB的延长线交于点D,
∴∠DCO=90°,
∵∠D=38°,
∴∠COD=52°,
∴∠E=∠COD=26°,
故答案为:26°.【点睛】此题考查切线的性质以及圆周角定理,关键是通过连接半径构造直角三角形求出∠COD的度数.15、【解析】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为.故答案为.考点:概率公式.16、【分析】连接,根据旋转的性质得到,根据相似三角形的性质得,即,即可得到结论.【详解】解:连接,∵矩形ABCD绕点A旋转90°,得矩形,
∴=BC=AD,,,
∵三点在同一直线上,∴∴.即.解得或(舍去)所以.故答案为:【点睛】本题考查旋转的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.17、【分析】根据已知条件,需要构造直角三角形,过D做DH⊥CR于点H,用含字母的代数式表示出PH、RH,即可求解.【详解】解:过点D作DQ⊥x轴于Q,交CB延长线于R,作DH⊥CR于H,过R做RF⊥y轴于F,∵抛物线与轴交于、两点,与轴交于点,∴A(1,0),B(2,0)C(0,2)∴直线BC的解析式为y=-x+2设点D坐标为(m,m²-3m+2),R(m,-m+2),∴DR=m²-3m+2-(-m+2)=m²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵经检验是方程的解.故答案为:【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.18、【分析】根据三角形的重心和平行线分线段成比例解答即可.【详解】∵△ABC的中线AD、CE交于点G,
∴G是△ABC的重心,
∴,
∵GF∥BC,
∴,
∵DC=BC,
∴,
故答案为:.【点睛】此题考查三角形重心问题以及平行线分线段成比例,解题关键是根据三角形的重心得出比例关系.三、解答题(共66分)19、(1)答案见解析;(2)BD=CE,证明见解析;(3)PB的长是或.【解析】试题分析:(1)根据题意画出图形即可;(2)根据“SAS”证明△ABD≌△ACE,从而可得BD=CE;(3)①根据“SAS”可证△ABD≌△ACE,从而得到∠ABD=∠ACE,再由两角对应相等的两个三角形相似可证△ACD∽△PBE,列比例方程可求出PB的长;②与①类似,先求出PD的长,再把PD和BD相加.解:(1)如图(2)BD和CE的数量是:BD=CE;∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠CAE.∵AD=AE,AB=AC,∴△ABD≌△ACE,∴BD=CE.(3)①CE=.∵△ABD≌△ACE,∴∠ABD=∠ACE,∴△ACD∽△PBE,,∴;②∵△ABD∽△PDC,,∴;∴PB=PD+BD=.∴PB的长是或.20、(1)详见解析;(2)3.2【分析】(1)证明,利用线段比例关系可得;(2)利用等腰三角形三线合一和勾股定理求出AM的长,再由(1)中关系式可得AH长度,可得CH的长.【详解】解:(1)证明:∵,为的中点,∴∴∵∴∴∴∴∴(2)解:∵,,M为的中点,∴,在中,,由(1)得∴.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形三线合一的性质,解题的关键是利用相似三角形得到线段比例关系.21、(1),;(2)1.【分析】(1)利润=一台冰箱的利润×销售数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量会提高;(2)根据每台的利润×销售数量列出函数关系式,再根据二次函数的性质,求利润的最大值.【详解】解:(1)降价后销售数量为;降价后的利润为:400-x,故答案为:,;(2)设总利润为y元,则∵,开口向下∴当时,最大此时售价为(元)答:每台冰箱的实际售价应定为1元时,利润最大.【点睛】本题考查了二次函数的实际应用中的销售问题,解题的关键是分析题意,找出关键的等量关系,列出函数关系式.22、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为20时最大,最大值是2400元【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到,根据二次函数的性质得到当时,随的增大而增大,于是得到结论.【详解】(1)根据题意得,;(2)根据题意得,,解得:,,∵每件利润不能超过60元,∴,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,,∵,∴当时,随的增大而增大,∴当时,,答:当为20时最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.23、(1)随机(2)【解析】试题分析:(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案.试题解析:(1)“其中有1个球是黑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询行业前台销售总结
- 文化创意行业品牌推广实践总结
- 泌尿外科护士的职责概述
- 社联事务部转正申请
- 关于专项债券事前绩效评价咨询服务合同的请示
- 2025年度文化旅游景区门票代理销售合同精3篇
- 二零二五年度便利店员工工作时间与休息安排合同3篇
- 2025年咸阳货运资格证考试题库
- 二零二五年度房产买卖合同补充协议(涉及交易双方信息保密)3篇
- 二零二五年度多人股东合作开发智能交通项目协议范本
- 煤矿立井井筒及硐室设计规范
- 房地产项目开发合作协议书
- JJG(交通) 171-2021 超声式成孔质量检测仪检定规程
- QCT457-2023救护车技术规范
- 《中国大熊猫》课件大纲
- 新课标背景下的大单元教学研究:国内外大单元教学发展与演进综述
- (正式版)HGT 4339-2024 机械设备用涂料
- 2024年医疗器械销售总结
- 基于物联网的支护机械远程监控系统
- SLT278-2020水利水电工程水文计算规范
- 心灵养生的疗愈之道
评论
0/150
提交评论