版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省大连市西岗区九年级数学第一学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,、、是小正方形的顶点,且每个小正方形的边长为1,则的值为()A. B.1 C. D.2.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3cm,那么PP′的长为()A. B. C. D.3.化简的结果是()A. B. C. D.4.某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()A.10% B.20% C.25% D.40%5.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)6.已知,,那么ab的值为()A. B. C. D.7.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x=3500B.2500(1+x)=3500C.2500(1+x%)=3500D.2500(1+x)+2500(1+x)=350010.下列四个图形中,不是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。12.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.13.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.14.如图,点,,都在上,连接,,,,,,则的大小是______.15.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则_______.16.如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是_____.17.写出一个二次函数关系式,使其图象开口向上_______.18.已知一元二次方程有一个根为,则的值为________________.三、解答题(共66分)19.(10分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.20.(6分)用适当的方法解下列方程:(1)(2)21.(6分)如图,已知的三个顶点的坐标分别为、、,P(a,b)是△ABC的边AC上一点:(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A所走的路径长为.(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2,并写出点A2、的坐标:A2().(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为(直接写出结果).22.(8分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为.根据测得的数据,计算这座灯塔的高度(结果取整数).参考数据:,,.23.(8分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)24.(8分)如图,中,,,为内部一点,.求证:.25.(10分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.26.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?
参考答案一、选择题(每小题3分,共30分)1、C【分析】连接BC,AB=,BC=,AC=,得到△ABC是直角三角形,从而求解.【详解】解:连接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故选:C.【点睛】本题考查直角三角形,勾股定理;熟练掌握在方格中利用勾股定理求边长,同时判断三角形形状是解题的关键.2、D【分析】由题意易证,则有,进而可得,最后根据勾股定理可求解.【详解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵将△ABP绕点A逆时针旋转后,能与△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故选D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.3、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.4、B【分析】2019年水果产量=2017年水果产量,列出方程即可.【详解】解:根据题意得,解得(舍去)故答案为20%,选B.【点睛】本题考查了一元二次方程的应用.5、A【解析】试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.考点:1.位似变换;2.坐标与图形性质.6、C【分析】利用平方差公式进行计算,即可得到答案.【详解】解:∵,,∴;故选择:C.【点睛】本题考查了二次根式的乘法运算,解题的关键是熟练运用平方差公式进行计算.7、A【解析】.所以4月份营业额约为3×30=90(万元).8、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9、B【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【详解】设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点睛】本题考查一元二次方程的应用--求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).10、B【分析】根据中心对称图形的概念,即可求解.【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.二、填空题(每小题3分,共24分)11、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,
∵∠AOB=90°,
∴AB是直径,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵点A的坐标为(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.12、46°【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.13、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.14、【分析】根据题意可知△ABC是等腰三角形,∠BAO=20°,可得出∠AOB的度数,根据同弧所对的圆周角是圆心角的一半即可得出答案.【详解】解:∵AO=OB∴△AOB是等腰三角形∵∠BAO=20°∴∠OBA=20°,∠AOB=140°∵∠AOB=2∠ACB∴∠ACB=70°故答案为:70°【点睛】本题主要考查的是同弧所对的圆周角是圆心角的一半以及圆的基本性质,掌握这两个知识点是解题的关键.15、1【分析】根据题意求得,根据平行线分线段成比例定理解答.【详解】∵,∴=1,∵l1∥l1∥l3,∴==1,故答案为:1.【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.16、1【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,解得,S△ABC=25,∴四边形DBCE的面积=25﹣4=1,故答案为:1.【点睛】考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17、【分析】抛物线开口向上,则二次函数解析式的二次项系数为正数,据此写二次函数解析式即可.【详解】∵图象开口向上,∴二次项系数大于零,∴可以是:(答案不唯一).故答案为:.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.18、-1【分析】根据一元二次方程的根的定义,即可求解.【详解】∵一元二次方程有一个根为,∴,解得:k=-1,故答案是:-1.【点睛】本题主要考查一元二次方程方程根的定义,掌握一元二次方程根的定义,是解题的关键.三、解答题(共66分)19、(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【分析】(1)根据已知条件先求得,,将、坐标代入,再求得、,最后将其代入即可得解;(2)假设存在符合条件的点,并设点的横坐标,然后根据已知条件用含的式子表示出、的坐标,再利用坐标平面内距离公式求得、间的距离,将其进行配方即可进行判断并求解;(3)分、两种情况进行讨论,求得相应的符合要求的点坐标即可.【详解】解:(1)∵抛物线直线相交于、∴当时,;当时,,则∴,∴把代入得∴∴(2)假设存在符合条件的点,并设点的横坐标则、∴∵∴有最大值当时,长度的最大值为,此时点的坐标为(3)①当时∵直线垂直于直线∴可设直线的解析式为∵直线过点∴∴∴直线的解析式为∴∴或(不合题意,舍去)∴此时点的坐标为∴当时,∴此时点的坐标为;②当时∴点的纵坐标与点的纵坐标相等即∴∴解得(舍去)∴当时,∴此时点的坐标为.∴综上所述,符合条件的点存在,为直角三角形时点的坐标为或.故答案是:(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【点睛】本题考查了二次函数与一次函数的综合应用,涉及到了动点问题、最值问题、用待定系数法求解析式、方程组问题等,充分考查学生的综合运用能力和数形结合的思想方法.20、(1),;(2),【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1),.(2),,.【点睛】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.21、(1)画图见解析,π;(2)画图见解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分别得出△ABC绕点O逆时针旋转90º后的对应点得到的位置,进而得到旋转后的得到,而点A所走的路径长为以O为圆心,以OA长为半径且圆心角为90°的扇形弧长;(2)由点P的对应点为P2(a+6,b+2)可知△ABC向右平移6个单位长度,再向上平移2个单位长度,即可得到的△A2B2C2;(3)以位似比2:1作图即可,注意有两个图形,与点P对应的点P3的坐标是由P的横、纵坐标都乘以2或-2得到的.【详解】解:(1)如图所示,∵∴点A所走的路径长为:故答案为π(2)∵由点P的对应点为P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6个单位长度,再向上平移2个单位长度可得到的,∴点A对应点A2坐标为(4,4)△A2B2C2如图所示,(3)∵P(a,b)且以点O为位似中心,△A3B3C3与△ABC的位似比为2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如图所示,22、这座灯塔的高度约为45m.【分析】在Rt△ADC和Rt△BDC中,根据三角函数AD、BD就可以用CD表示出来,再根据就得到一个关于DC的方程,解方程即可.【详解】解:如图,根据题意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:这座灯塔的高度约为45m.【点睛】本题考查了解直角三角形的应用-----方向角的问题,列出关于CD的方程是解答本题的关键,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23、能,.【分析】根据平均数的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《纪录片赏析》2023-2024学年第一学期期末试卷
- 畜牧职业规划
- 智能化系统建筑施工合同
- 建筑工程消防管道施工合同
- 家电行业销售专员聘用合同
- 公安消防火工品储存规范
- 演播室场地租赁合同
- 上海市城市供电系统扩建施工合同
- 景观设计草坪绿化合同
- 旅游景点墙面施工合同
- 租地种香蕉合同
- 上海市虹口区2024学年第一学期期中考试初三物理试卷-学生版
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 档案整理及数字化服务方案(技术标 )
- 水利工程质量与安全监督工作实务PPT课件
- 放射性口腔粘膜炎的发病机制及危险因素
- 加油站特殊作业安全管理制度(完整版)
- 质量风险抵押金管理办法
- 村纪检监督小组工作职责
- 《宏观经济学乘数论》PPT课件.ppt
- 警务监督员表态发言(共4篇)
评论
0/150
提交评论